Publications by authors named "Sok-Siam Gouk"

This work explores the design of a vitrification solution (VS) for scaled-up cryopreservation of hepatocytes, by adapting VS(basic) (40% (v/v) ethylene glycol 0.6M sucrose, i.e.

View Article and Find Full Text PDF

Objective: To investigate the efficacy of vitrification, rapid freezing, and slow freezing in preserving testicular tissue for subsequent isolation of spermatogonial stem cells.

Design: Experimental study.

Setting: University-based laboratory.

View Article and Find Full Text PDF

Tissue products will age upon storage. Although a number of tissue products have been used for tissue repair and regeneration for more than a decade, no study has been published on the aging of tissue products and its potential effect on product function. This study investigated aging-caused changes in a regenerative biologic scaffold (AlloDerm native tissue matrix) upon storage at accelerated conditions.

View Article and Find Full Text PDF

Development of an effective preservation strategy to fulfill off-the-shelf availability of tissue-engineered constructs (TECs) is demanded for realizing their clinical potential. In this study, the feasibility of vitrification, ice-free cryopreservation, for precultured ready-to-use TECs was evaluated. To prepare the TECs, bone marrow-derived porcine mesenchymal stromal cells (MSCs) were seeded in polycaprolactone-gelatin nanofibrous scaffolds and cultured for 3 weeks before vitrification treatment.

View Article and Find Full Text PDF

Application of cell--biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate-fibrin beads with porcine mesenchymal stromal cells has been achieved in this study.

View Article and Find Full Text PDF

We compared cryopreservation of mammalian neural stem cells (NSCs) cultured as neurospheres by slow-cooling (1 C/min) in 10% (v/v) DMSO and cryopreservation by immersion into liquid nitrogen in ethylene glycol (EG)-sucrose solutions that support vitrification (40% (v/v) EG, 0.6 M sucrose) or that do not (37% v/v) EG, 0.6 M sucrose and 30% (v/v) EG, 0.

View Article and Find Full Text PDF

AlloDerm, a processed acellular human tissue matrix, is used in a number of surgical applications for tissue repair and regeneration. In the present work, AlloDerm serves as a model system for studying gamma radiation-induced changes in tissue structure and stability as well as the effect of such changes on the cell-matrix interactions, including cell repopulation and matrix remodeling. AlloDerm tissue matrix was treated with 2-30 kGy gamma irradiation at room temperature.

View Article and Find Full Text PDF

The present work characterizes the formation of free radicals in an implantable human acellular dermal tissue (Alloderm, LifeCell Corp., Branchburg, NJ) upon irradiation. The tissue was preserved in a vitreous carbohydrate matrix by freeze-drying.

View Article and Find Full Text PDF