Several mechanisms strictly regulate polyamine concentration, and blood polyamines are excreted in urine. This indicates polyamine accumulation in renal dysfunction, and studies have shown increased blood polyamine concentrations in patients with renal failure. Hemodialysis (HD) may compensate for polyamine excretion; however, little is known about polyamine excretion.
View Article and Find Full Text PDFBackground And Aims: The use of the psoas muscle mass index (PMI) using computed tomography (CT) has become a marker of interest to evaluate whole body muscle mass. However, in hemodialysis (HD) patients, reports about the clinical significance of psoas muscle evaluation are limited. We aimed to clarify the association between PMI and skeletal muscle mass index (SMI) using bioelectrical impedance analysis (BIA), and to investigate factors affecting PMI in HD patients.
View Article and Find Full Text PDFHemoglobin (Hb) is associated with cerebral oxygenation status owing to its important role of carrying oxygen to systemic tissues. However, data concerning the associations between Hb levels and cerebral regional oxygen saturation (rSO2) of hemodialysis (HD) patients is limited. We aimed to identify these associations to consider a target Hb level for renal anemia management.
View Article and Find Full Text PDFPatients with chronic kidney disease (CKD) are at risk for bone loss and sarcopenia because of associated mineral and bone disorders (MBD), malnutrition, and chronic inflammation. Both osteoporosis and sarcopenia are associated with a poor prognosis; however, few studies have evaluated the relationship between muscle mass and bone mineral density (BMD) in hemodialysis (HD) patients. The present study examined the association between skeletal muscle mass index (SMI) and BMD in the lumbar spine and femoral neck in HD patients.
View Article and Find Full Text PDF