Publications by authors named "Soili I Lehtonen"

Chicken avidin (Avd) and streptavidin from Streptomyces avidinii are extensively used in bionanotechnology due to their extremely tight binding to biotin (Kd ~ 10-15 M for chicken Avd). We previously reported engineered Avds known as antidins, which have micro- to nanomolar affinities for steroids, non-natural ligands of Avd. Here, we report the 2.

View Article and Find Full Text PDF

Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications.

View Article and Find Full Text PDF

Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols.

View Article and Find Full Text PDF

Switchavidin is a chicken avidin mutant displaying reversible binding to biotin, an improved binding affinity toward conjugated biotin, and low nonspecific binding due to reduced surface charge. These properties make switchavidin an optimal tool in biosensor applications for the reversible immobilization of biotinylated proteins on biotinylated sensor surfaces. Furthermore, switchavidin opens novel possibilities for patterning, purification, and labeling.

View Article and Find Full Text PDF

Protein kinases phosphorylate substrates in the context of specific phosphorylation site sequence motifs. The knowledge of the specific sequences that are recognized by kinases is useful for mapping sites of phosphorylation in protein substrates and facilitates the generation of model substrates to monitor kinase activity. Here, we have adapted a positional scanning peptide library method to a microarray format that is suitable for the rapid determination of phosphorylation site motifs for tyrosine kinases.

View Article and Find Full Text PDF