UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified.
View Article and Find Full Text PDFImplantation of the blastocyst into the uterus is a specific and essential process for mammalian embryonic development. In mice, implantation is initiated from the mural trophectoderm of the blastocyst and the mTE controls implantation progression by acquiring the ability to attach and invade into the endometrium while differentiating into primary trophoblast giant cells. Nevertheless, it remains largely unclear when and how the mTE differentiates and acquires this ability during implantation.
View Article and Find Full Text PDFDNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining.
View Article and Find Full Text PDFRemoval of senescent cells (senolysis) has been proposed to be beneficial for improving age-associated pathologies, but the molecular pathways for such senolytic activity have not yet emerged. Here, we identified glutaminase 1 () as an essential gene for the survival of human senescent cells. The intracellular pH in senescent cells was lowered by lysosomal membrane damage, and this lowered pH induced kidney-type glutaminase (KGA) expression.
View Article and Find Full Text PDFCell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-Cre-tdTomato mouse model to analyze the in vivo characteristics of p16 cells at a single-cell level. We found tdTomato-positive p16 cells detectable in all organs, which were enriched with age.
View Article and Find Full Text PDFStable inheritance of DNA methylation is critical for maintaining differentiated phenotypes in multicellular organisms. We have recently identified dual mono-ubiquitylation of histone H3 (H3Ub2) by UHRF1 as an essential mechanism to recruit DNMT1 to chromatin. Here, we show that PCNA-associated factor 15 (PAF15) undergoes UHRF1-dependent dual mono-ubiquitylation (PAF15Ub2) on chromatin in a DNA replication-coupled manner.
View Article and Find Full Text PDFThe Dlk1-Dio3 imprinted domain functions in embryonic development but the roles of noncoding RNAs expressed from this domain remain unclear. We addressed this question by generating transgenic (TG) mice harbouring a BAC carrying IG-DMR (intergenic-differentially methylated region), Gtl2-DMR, Gtl2, Rtl1/Rtl1as, and part of Rian. High postnatal lethality (>85%) of the BAC-TG pups was observed in the maternally transmitted individuals (MAT-TG), but not following paternal transmission (PAT-TG).
View Article and Find Full Text PDFWhole-genome shotgun bisulfite sequencing (WG-SBS) is currently the most powerful tool available for understanding genomewide cytosine methylation with single-base resolution; however, the high sequencing cost limits its widespread application, particularly for mammalian genomes. We mapped high- to low-coverage SBS short reads of mouse and human female developing germ cells to consensus sequences of repetitive elements that were multiplied in the respective host genome. This mapping strategy effectively identified active and evolutionarily young retrotransposon subfamilies and centromeric satellite repeats that were resistant to DNA demethylation during the investigated progressive stages of germ cell development.
View Article and Find Full Text PDFIn mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively.
View Article and Find Full Text PDF