Motor-driven cytoskeletal remodeling in cellular systems can often be accompanied by a diffusive-like effect at local scales, but distinguishing the contributions of the ordering process, such as active contraction of a network, from this active diffusion is difficult to achieve. Using light-dimerizable kinesin motors to spatially control the formation and contraction of a microtubule network, we deliberately photobleach a grid pattern onto the filament network serving as a transient and dynamic coordinate system to observe the deformation and translation of the remaining fluorescent squares of microtubules. We find that the network contracts at a rate set by motor speed but is accompanied by a diffusive-like spread throughout the bulk of the contracting network with effective diffusion constant two orders of magnitude lower than that for a freely-diffusing microtubule.
View Article and Find Full Text PDFActive matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules.
View Article and Find Full Text PDFDeveloping lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction.
View Article and Find Full Text PDF