Endotracheal intubation (ETI) is a procedure to manage and secure an unconscious patient's airway. It is one of the most critical skills in emergency or intensive care. Regular training and practice are required for medical providers to maintain proficiency.
View Article and Find Full Text PDFBackground: Endotracheal intubation (ETI) is an important emergency intervention. Only limited data describe ETI skill acquisition and often use bulky technology, not easily transitioned to the clinical setting. In this study, we used small, portable inertial detection technology to characterize intubation kinematic differences between experienced and novice intubators.
View Article and Find Full Text PDFIntroduction: Traditional laparoscopic surgery (TLS) has increasingly been associated with physical muscle strain for the operating surgeon. Robot-assisted laparoscopic surgery (RALS) may offer improved ergonomics. Ergonomics for the surgeon on these two platforms can be compared using surface electromyography (sEMG) to measure muscle activation, and the National Aeronautics and Space Administration Task Load Index (NTLX) survey to assess workload subjectively.
View Article and Find Full Text PDFRecent technological progress offers the opportunity to significantly transform conventional open surgical procedures in ways that allow minimally invasive surgery (MIS) to be accomplished by specific operative instruments' entry into the body through key-sized holes rather than large incisions. Although MIS offers an opportunity for less trauma and quicker recovery, thereby reducing length of hospital stay and attendant costs, the complex nature of this procedure makes it difficult to master, not least because of the limited work area and constricted degree of freedom. Accordingly, this research seeks to design a Teach and Playback device that can aid surgical training by key-framing and then reproducing surgical motions.
View Article and Find Full Text PDFBackground: Laparoscopic surgery is associated with a high degree of ergonomic stress. However, the stress associated with surgical assisting is not known. In this study, we compare the ergonomic stress associated with primary and assistant surgical roles during laparoscopic surgery.
View Article and Find Full Text PDFDue to its inherent complexity such as limited work volume and degree of freedom, minimally invasive surgery (MIS) is ergonomically challenging to surgeons compared to traditional open surgery. Specifically, MIS can expose performing surgeons to excessive ergonomic risks including muscle fatigue that may lead to critical errors in surgical procedures. Therefore, detecting the vulnerable muscles and time-to-fatigue during MIS is of great importance in order to prevent these errors.
View Article and Find Full Text PDFIntroduction: Many laparoscopic surgeons report musculoskeletal symptoms that are thought to be related to the ergonomic stress of performing laparoscopy. Robotic surgical systems may address many of these limitations. To date, however, there have been no studies exploring the quantitative ergonomics of robotic surgery.
View Article and Find Full Text PDFIntroduction: Robotic surgery may result in ergonomic benefits to surgeons. In this pilot study, we utilize surface electromyography (sEMG) to describe a method for identifying ergonomic differences between laparoscopic and robotic platforms using validated Fundamentals of Laparoscopic Surgery (FLS) tasks. We hypothesize that FLS task performance on laparoscopic and robotic surgical platforms will produce significant differences in mean muscle activation, as quantified by sEMG.
View Article and Find Full Text PDF