FB_MR5 is a nucleotide-binding domain and leucine-rich repeat protein identified from wild apple species Malus × robusta 5 conferring disease resistance to bacterial fire blight. FB_MR5 (hereafter MrMR5) recognizes the cysteine protease effector EaAvrRpt2 secreted from the causal agent of bacterial fire blight, Erwinia amylovora. We previously reported that MrMR5 is activated by the C-terminal cleavage product (ACP3) of Malus domestica RIN4 (MdRIN4) produced by EaAvrRpt2-directed proteolysis.
View Article and Find Full Text PDFArabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv.
View Article and Find Full Text PDFThe plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense- associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues.
View Article and Find Full Text PDFNumerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement.
View Article and Find Full Text PDFBacterial wilt disease caused by several Ralstonia species is one of the most destructive diseases in Solanaceae crops. Only a few functional resistance genes against bacterial wilt have been cloned to date. Here, we show that the broadly conserved type III secreted effector RipY is recognized by the Nicotiana benthamiana immune system, leading to cell death induction, induction of defense-related gene expression, and restriction of bacterial pathogen growth.
View Article and Find Full Text PDFSome nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified.
View Article and Find Full Text PDFThe bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology.
View Article and Find Full Text PDFSclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients.
View Article and Find Full Text PDF, a Gram-positive plant-pathogenic bacterium, utilizes apoplastic effectors for disease development in host plants. Here, we determine the roles of Pat-1 (a putative serine protease) in pathogenicity and plant immunity. Pat-1 was found to be a genuine secreted protein, and the secreted mature form did not carry the first 33 amino acids predicted to be a signal peptide (SP).
View Article and Find Full Text PDFMultiple bacterial effectors target RPM1-INTERACTING PROTEIN4 (RIN4), the biochemical modifications of which are recognized by several plant nucleotide-binding and leucine-rich repeat immune receptor (NLR) proteins. Recently, a comparative study of Arabidopsis and apple (Malus domestica) RIN4s revealed that the RIN4 specificity motif (RSM) is critical for NLR regulation. Here, we investigated the extent to which the RSM contributes to the functions of natural RIN4 variants.
View Article and Find Full Text PDFpv. is a major pathogen of soybean in Korea. Here, we analyzed pathogenicity genes based on a comparative genome analysis of five Korean strains and one strain from the United States, 8ra.
View Article and Find Full Text PDFPlant pathogenic bacteria deliver effectors into plant cells to suppress immunity and promote pathogen survival; however, these effectors can be recognized by plant disease resistance proteins to activate innate immunity. The bacterial acetyltransferase effectors HopZ5 and AvrBsT trigger immunity in Arabidopsis thaliana genotypes lacking SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1 (SOBER1). Using an Arabidopsis accession, Tscha-1, that naturally lacks functional SOBER1 but is unable to recognize HopZ5, we demonstrated that RESISTANCE TO P.
View Article and Find Full Text PDFMol Plant Microbe Interact
August 2021
causes bacterial wilt disease in solanaceous crops. Identification of avirulence type III-secreted effectors recognized by specific disease resistance proteins in host plant species is an important step toward developing durable resistance in crops. In the present study, we show that effector RipJ functions as an avirulence determinant in LA2093.
View Article and Find Full Text PDFRalstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity.
View Article and Find Full Text PDFBacterial wilt caused by the species complex (RSSC) threatens the cultivation of important crops worldwide. We sequenced 30 RSSC phylotype I () strains isolated from pepper () and tomato () across the Republic of Korea. These isolates span the diversity of phylotype I, have extensive effector repertoires and are subject to frequent recombination.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2020
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago.
View Article and Find Full Text PDFWhole-genome annotation error that omits essential protein-coding genes hinders further research. We developed Target Gene Family Finder (TGFam-Finder), an alternative tool for the structural annotation of protein-coding genes containing target domain(s) of interest in plant genomes. TGFam-Finder took considerably reduced annotation run-time and improved accuracy compared to conventional annotation tools.
View Article and Find Full Text PDFMol Plant Microbe Interact
August 2020
is a devastating pathogen causing potato late blight (). Here we report the sequencing, assembly and genome annotation for two isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of genome assembly.
View Article and Find Full Text PDF