Publications by authors named "Sohier T"

Field-effect transistors (FETs) based on two-dimensional materials (2DMs) with atomically thin channels have emerged as a promising platform for beyond-silicon electronics. However, low carrier mobility in 2DM transistors driven by phonon scattering remains a critical challenge. To address this issue, we propose the controlled introduction of localized tensile strain as an effective means to inhibit electron-phonon scattering in 2DM.

View Article and Find Full Text PDF

We report on transport measurements in monolayer MoSdevices, close to the bottom of the conduction band edge. These devices were annealedbefore electrical measurements. This allows us to obtain good ohmic contacts at low temperatures, and to measure precisely the conductivity and mobility via four-probe measurements.

View Article and Find Full Text PDF

In the Dirac semimetal BaNiS, the Dirac nodes are located along the Γ-M symmetry line of the Brillouin zone, instead of being pinned at fixed high-symmetry points. We take advantage of this peculiar feature to demonstrate the possibility of moving the Dirac bands along the Γ-M symmetry line in reciprocal space by varying the concentration of K atoms adsorbed onto the surface of cleaved BaNiS single crystals. By means of first-principles calculations, we give a full account of this observation by considering the effect of the electrons donated by the K atom on the charge transfer gap, which establishes a promising tool for engineering Dirac states at surfaces, interfaces, and heterostructures.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how dimensionality affects the behavior of infrared-active phonons and their splitting in materials, particularly highlighting a breakdown in two-dimensional systems.
  • An analytical model combined with density-functional theory is used to investigate one-dimensional systems such as nanowires and nanotubes, revealing that dielectric splitting diminishes at the zone center.
  • The findings establish a connection between the dielectric properties and the radius of 1D materials, paving the way for new methods of characterizing them using infrared and Raman spectroscopy.
View Article and Find Full Text PDF

A recent 2D spinFET concept proposes to switch electrostatically between two separate sublayers with strong and opposite intrinsic Rashba effects, exploiting the spin-layer-locking mechanism in centrosymmetric materials with local dipole fields. Here, we propose a novel monolayer material within this family, lutetium oxide iodide (LuIO). It displays one of the largest Rashba effects among 2D materials (up to = 0.

View Article and Find Full Text PDF

Many promising optoelectronic devices, such as broadband photodetectors, nonlinear frequency converters, and building blocks for data communication systems, exploit photoexcited charge carriers in graphene. For these systems, it is essential to understand the relaxation dynamics after photoexcitation. These dynamics contain a sub-100 fs thermalization phase, which occurs through carrier-carrier scattering and leads to a carrier distribution with an elevated temperature.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has democratized genome-editing in eukaryotic cells and led to the development of numerous innovative applications. However, delivery of the Cas9 protein and single-guide RNA (sgRNA) into target cells can be technically challenge. Classical viral vectors, such as those derived from lentiviruses (LVs) or adeno-associated viruses (AAVs), allow for efficient delivery of transgenes coding for the Cas9 protein and its associated sgRNA in many primary cells and in vivo.

View Article and Find Full Text PDF

We have performed small-angle neutron scattering in a momentum transfer range (0.05 < < 0.5 Å) to study long-range order and concentration fluctuations in deep eutectic solvents (DESs) and their aqueous solutions.

View Article and Find Full Text PDF

Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. Although extrinsic mechanisms can in general be minimized by improving fabrication processes, the suppression of intrinsic scattering (driven, for example, by electron-phonon interactions) requires modification of the electronic or vibrational properties of the material.

View Article and Find Full Text PDF

The compendium of RNA-binding proteins (RBPs) has been greatly expanded by the development of RNA-interactome capture (RIC). However, it remained unknown if the complement of RBPs changes in response to environmental perturbations and whether these rearrangements are important. To answer these questions, we developed "comparative RIC" and applied it to cells challenged with an RNA virus called sindbis (SINV).

View Article and Find Full Text PDF

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells.

View Article and Find Full Text PDF

Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds.

View Article and Find Full Text PDF

We investigate the long-wavelength dispersion of longitudinal and transverse optical phonon modes in polar two-dimensional materials, multilayers, and their heterostructures. Using analytical models and density-functional perturbation theory in a two-dimensional framework, we show that at variance with the three-dimensional case these modes are degenerate at the zone center but the macroscopic electric field associated with the longitudinal-optical modes gives rise to a finite slope at the zone center in their corresponding phonon dispersions. This slope increases linearly with the number of layers and it is determined solely by the Born effective charges of the material and the dielectric properties of the surrounding media.

View Article and Find Full Text PDF

Characterization of RNA-binding protein interactions with RNA became inevitable to properly understand the cellular mechanisms involved in gene expression regulation. Structural investigations bring information at the atomic level on these interactions and complementary methods such as Isothermal Titration Calorimetry (ITC) and Surface Plasmon Resonance (SPR) are commonly used to quantify the affinity of these RNA-protein complexes and evaluate the effect of mutations affecting these interactions. The switchSENSE technology has recently been developed and already successfully used to investigate protein interactions with different types of binding partners (DNA, protein/peptide or even small molecules).

View Article and Find Full Text PDF

We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to compute all electronic and vibrational properties and electron-phonon coupling matrix elements; the phonon-limited resistivity is then calculated within a Boltzmann-transport approach. An effective tight-binding model, validated against first-principles results, is also used to study the role of electron-electron interactions at the level of many-body perturbation theory.

View Article and Find Full Text PDF