A deep understanding of the factors influencing the morphology of thin films based on conjugated polymers is essential to boost their performance in optoelectronic devices. Herein, we investigated the electronic structure and morphology of thin films of the copolymer poly(9,9-dioctyl-fluorenyl--bithiophene) (F8T2) in its pristine form as well as samples processed with the solvent additive 1,8-diiodooctane (DIO) or post-processed through thermal annealing treatment. Measurements were carried out using angle-resolved S K-edge NEXAFS (near-edge X-ray absorption fine structure) in total electron yield (TEY) and fluorescence yield (FY) detection modes.
View Article and Find Full Text PDFIn this paper, the effect of a silafluorene derivative copolymer, the poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophene-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) sensitized by a simpler homopolymer, the poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) were investigated in a bilayer and ternary blend configuration. The energy transfer between the polymers prior to electron transfer to the acceptors can be an efficient alternative to photocurrent improvement in photovoltaic devices. The interactions between the two donor polymer films were evaluated optically and morphologically with several experimental techniques and correlated to the photovoltaic performance.
View Article and Find Full Text PDFIn this study, we investigate two copolymers as electron donors in photovoltaic devices, PFO-DBT (poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]) and its analogue with Si, PSiF-DBT (poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]). The results discussed here are related to the influence of heavy atoms on the electrical and morphological properties of the devices. Charge transfer dynamics in the polymeric films were evaluated using the core-hole clock method.
View Article and Find Full Text PDFThe conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), is certainly one of the most important substitute materials for indium tin oxide in organic devices. Its metallic conductivity and transmittance bring favorable perspectives for organic photovoltaic applications. Although graphene oxide (GO) is not a good conductor, it can form high-quality thin films and can be transparent, and additionally, GO is an inexpensive material and can be easily synthesized.
View Article and Find Full Text PDF