J Colloid Interface Sci
February 2025
Hypothesis: Understanding calcium carbonate (CaCO) precipitation in various polymorphs from nanoparticle size (amorphous calcium carbonate) to microparticle size (vaterite, aragonite, dendrite, calcite) is important for practical applications, including carbon geo-storage (e.g., basalt formations), hydrogen storage, groundwater management, and soil stabilization.
View Article and Find Full Text PDFHypothesis: The relaxation time in viscoelastic surfactant solutions is a function of temperature, salt/surfactant concentrations, resting conditions, as well as shear frequency. The simplistic assumption of a single and constant relaxation time is not representative of all relaxation modes in these solutions especially at high frequencies.
Experiments: Steady-state and oscillatory measurements are carried out to study the effects of high temperature, concentration and resting condition on the rheology of surfactants/salt mixtures including a non-ionic and a zwitterionic/anionic surfactant system.
Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids.
View Article and Find Full Text PDFInjection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface.
View Article and Find Full Text PDF