Background: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters.
Methods: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody.
Environ Sci Pollut Res Int
December 2021
In recent years, South Asian economies have observed rapid urbanization along with expanding informal economy that poses a serious threat to environmental quality. This study examines the impact of urbanization and informal economy on the ecological footprint of selected South Asian countries. Results indicate that urbanization and informal economy increase the environmental degradation in South Asia and the estimates are statistically significant in the long run.
View Article and Find Full Text PDFBackground: Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function.
View Article and Find Full Text PDFMelanoma is a highly malignant skin cancer with high propensity to metastasize and develop drug resistance, making it a difficult cancer to treat. Current therapies targeting BRAF (V600) mutations are initially effective, but eventually tumors overcome drug sensitivity and reoccur. This process is accomplished in part by reactivating alternate signaling networks that reinstate melanoma proliferative and survival capacity, mostly through reprogramming of receptor tyrosine kinase (RTK) signaling.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) and chronic pancreatitis are characterized by a dense collagen-rich desmoplastic reaction. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagens that can regulate cell proliferation, migration, adhesion, and remodeling of the extracellular matrix. To address the role of DDR1 in PDA, Ddr1-null (Ddr) mice were crossed with the Kras; Trp53; Ptf1a (KPC) model of metastatic PDA.
View Article and Find Full Text PDFThe Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site.
View Article and Find Full Text PDFBackground: Discoidin Domain Receptors (DDRs) are membrane-tethered proteins of the receptor tyrosine kinase family, which signal in response to collagen. DDR expression is associated with human diseases, including fibrosis and cancer. The role of DDRs in human pathogenesis is mediated by dysregulated receptor function in response to the collagenous milieu.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2019
Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that signal in response to collagen. We had previously shown that collagen binding leads to clustering of DDR1b, a process partly mediated by its extracellular domain (ECD). In this study, we investigated (i) the impact of the oligomeric state of DDR2 ECD on collagen binding and fibrillogenesis, (ii) the effect of collagen binding on DDR2 clustering, and (iii) the spatial distribution and phosphorylation status of DDR1b and DDR2 after collagen stimulation.
View Article and Find Full Text PDFIntroduction: Stigmatization, social exclusion and consequent banishment from the society makes transgender's life even tougher; isolating, pushing and forcing them into inappropriate conducts/habits like selling sex. This study investigates the association of social exclusion/victimization with high-risk behaviors among transgender community of Rawalpindi and Islamabad (Pakistan).
Methods: Through a cross-sectional study design, a sample of 189 transgender community living in twin cities of Rawalpindi and Islamabad was selected using snowball sampling technique.
Objective: To determine the perceptions of house officers working in hospitals about joining anaesthesiology as a career.
Methods: This quantitative, descriptive questionnaire-based study was carried out from September 2014 to February 2015 in 26 teaching hospitals of Lahore, Pakistan, and comprised house officers. Those with at least three months of working experience in anaesthesiology were included.
ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J.
View Article and Find Full Text PDFThe present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO).
View Article and Find Full Text PDFThe discoidin domain receptors (DDRs) are receptor tyrosine kinases that upon binding to collagens undergo receptor phosphorylation, which in turn activates signal transduction pathways that regulate cell-collagen interactions. We report here that collagen-dependent DDR1 activation is partly regulated by the proteolytic activity of the membrane-anchored collagenases, MT1-, MT2-, and MT3-matrix metalloproteinase (MMP). These collagenases cleave DDR1 and attenuate collagen I- and IV-induced receptor phosphorylation.
View Article and Find Full Text PDFThe discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets.
View Article and Find Full Text PDFGelatin zymography is a simple yet powerful method to detect proteolytic enzymes capable of degrading gelatin from various biological sources. It is particularly useful for the assessment of two key members of the matrix metalloproteinase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), due to their potent gelatin-degrading activity. This polyacrylamide gel electrophoresis-based method can provide a reliable assessment of the type of gelatinase, relative amount, and activation status (latent, compared with active enzyme forms) in cultured cells, tissues, and biological fluids.
View Article and Find Full Text PDFChitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique.
View Article and Find Full Text PDFMT4-MMP (MMP17) belongs to a unique subset of membrane type-matrix metalloproteinases that are anchored to the cell surface via a glycosylphosphatidylinositol moiety. However, little is known about its biochemical properties. Here, we report that MT4-MMP is displayed on the cell surface as a mixed population of monomeric, dimeric, and oligomeric forms.
View Article and Find Full Text PDFJ Gen Appl Microbiol
October 2010
The present study is aimed at assessing the ability of metal-resistant yeast, Candida tropicalis CBL-1, to uptake metal from liquid medium. The minimum inhibitory concentration of Cd(II) against Candida tropicalis CBL-1 was 2,800 mg/L. The yeast could also tolerate Zn(II) (3,100 mg/L), Hg(II) (2,400 mg/L), Ni(II) (2,200 mg/L), Cr(VI) (2,000 mg/L), Pb(II) (1,100 mg/L), and Cu(II) (2,200 mg/L).
View Article and Find Full Text PDFWe report on an improved method to interpret single molecule dissociation measurements using atomic force microscopy. We describe an easy to use methodology to reject nonspecific binding events, as well as estimating the number of multiple binding events. The method takes nonlinearities in the force profiles into account that result from the deformation of the used polymeric linkers.
View Article and Find Full Text PDFMembrane type 1 (MT1)-matrix metalloproteinase (MT1-MMP) is a membrane-tethered MMP that has been shown to play a key role in promoting cancer cell invasion. MT1-MMP is highly expressed in bone metastasis of prostate cancer (PC) patients and promotes intraosseous tumor growth of PC cells in mice. The majority of metastatic prostate cancers harbor loss-of-function mutations or deletions of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten).
View Article and Find Full Text PDFPolymorphonuclear neutrophils (PMNs) are the first line of defense against invading organisms in humans; in addition, PMNs contribute to the linking of innate and adaptive immunity. To fulfill their biological behavior, PMNs utilize an arsenal of proteolytic enzymes, including members of the matrix metalloproteinase family of zinc-dependent endopeptidases. PMNs express high levels of MT6-MMP (MMP-25), a glycosyl-phosphatidylinositol-anchored MMP, that belongs to the subfamily of membrane-anchored matrix metalloproteinases.
View Article and Find Full Text PDFThe membrane type (MT) 6 matrix metalloproteinase (MMP) (MMP25) is a glycosylphosphatidylinositol-anchored matrix metalloproteinase (MMP) that is highly expressed in leukocytes and in some cancer tissues. We previously showed that natural MT6-MMP is expressed on the cell surface as a major reduction-sensitive form of M(r) 120, likely representing enzyme homodimers held by disulfide bridges. Among the membrane type-MMPs, the stem region of MT6-MMP contains three cysteine residues at positions 530, 532, and 534 which may contribute to dimerization.
View Article and Find Full Text PDFThe process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines.
View Article and Find Full Text PDFMMP25 (MT6-MMP) is one of the two glycosylphosphatidylinositol-anchored matrix metalloproteinases (MMPs) that have been suggested to play a role in pericellular proteolysis. However, its role in cancer is unknown, and its biochemical properties are not well established. Here we found a marked increase in MT6-MMP expression within in situ dysplasia and invasive cancer in 61 samples of human colon cancer.
View Article and Find Full Text PDF