Barium fluoride, an inorganic scintillation material used for the detection of X-ray and/or gamma-ray radiation, has been receiving increasing attention in the field of radiation measurements in fast-timing applications. To make full use of its timing properties, its slow emission around the ultraviolet region, more specifically, the 300 nm region needs to be suppressed. Although doping ions, such as lanthanum, yttrium, and cadmium, can suppress the slow component, such techniques can lose information of interacted radiations.
View Article and Find Full Text PDFThe continuous downscaling of electronic devices requires higher-resolution optical microscopic images for semiconductor failure analysis (FA). However, a part of the diffracted light from the measuring pattern in the silicon (Si) substrate cannot be collected due to the total internal reflection (TIR) at the interface between the Si substrate and air. We propose a metalens suitable for FA that improves resolution of optical microscopic images by collecting beyond the critical angle of TIR at the interface.
View Article and Find Full Text PDFStatic arbitrary two-dimensional beam patterns have been demonstrated using on-chip size "integrable spatial-phase-modulating surface-emitting lasers," which use the band edge mode of a two-dimensional photonic crystal as an in-plane resonator, while the spatial phase of the lightwaves of the band edge mode are simultaneously modulated in a holographic manner by a local positional shift of holes from their lattice points. Meanwhile, the beam patterns include a spot beam in the surface-normal direction (0th-order beam), which corresponds to components of vertical diffraction of the band edge modes without spatial phase modulation. A promising method, used to remove the 0th-order beam, uses a structure that prohibits the vertical diffraction of band edge modes.
View Article and Find Full Text PDFIntegrable spatial-phase-modulating surface-emitting lasers, which utilize the band edge mode of two-dimensional photonic-crystals as resonators, project static arbitrary two-dimensional beam patterns from on-chip size. In this device, holes shifting from the lattice point of a two-dimensional photonic crystal provide spatial phase modulation to light waves, which form standing waves in the resonator. Thus far, the origin of the beam patterns has not been studied, especially the formation of subsidiary beam patterns against the designed beam pattern.
View Article and Find Full Text PDF