Context: Curcumin, a naturally occurring polyphenol, has been extensively studied for its broad-spectrum anticancer effects. The potential benefits are, however, limited due to its poor water solubility and rapid degradation which result in low bioavailability on administration.
Objectives: This study encapsulates curcumin in nanoliposomes including an integrin-homing peptide combined with a C end R neuropilin-1 targeting motif for targeted delivery and receptor-mediated internalization, respectively.
J Control Release
November 2015
Reliable and predictive models of drug release kinetics in vitro and in vivo are still lacking for liposomal formulations. Developing robust, predictive release models requires systematic, quantitative characterization of these complex drug delivery systems with respect to the physicochemical properties governing the driving force for release. These models must also incorporate changes in release due to the dissolution media and methods employed to monitor release.
View Article and Find Full Text PDFDespite extensive study of liposomal drug formulations, reliable predictive models of release kinetics in vitro and in vivo are still lacking. Progress in the development of robust, predictive release models has been hindered by a lack of systematic, quantitative characterization of these complex drug delivery systems with respect to the myriad of factors that may influence drug release kinetics and the wide range of dissolution media/methods employed to monitor release. In this paper, the key processes and parameters needed to develop a complete mechanism-based model for doxorubicin release from actively loaded liposomal formulations resembling Doxil(®) are determined.
View Article and Find Full Text PDFThe object of this study was to investigate the influence of static and dynamic forces on mechanical properties of the biocompatible polymer ethyl cellulose. Similar polymeric films containing 40% (w/w) of the plasticizer dibutyl sebacate were subjected to tensile forces at different velocities. The average Young's modulus and the variation of yield strength, strain, and strain energy at different velocities complied with the pre-established theories of dynamic loadings.
View Article and Find Full Text PDFThis research was conducted to investigate the physico-mechanical characteristics of the EC-based coating membranes plasticized with two informal ingredients of vitamin resources, cholecalciferol and alpha-tocopherol, with respect to the commercial plasticizer DBS. Proceeding the experiment, free thin polymer sheetings of the sample formulations, incorporating incremental weight percents of the individual plasticizers were prepared employing a revised casting method of delayed solvent evaporation whereby similar flat specimens of standard dimensions were subjected to tensile loadings and extensions. The data were analyzed through the known equations of membrane theory in spherical subjects considering the complete symmetry of assumingly spherical pellets and/or granules.
View Article and Find Full Text PDF