Background: Smooth muscle cell (SMC) phenotype switching plays a central role during vascular remodeling. Growth factor receptors are negatively regulated by protein tyrosine phosphatases (PTPs), including its prototype PTP1B. Here, we examine how reduction of PTP1B in SMCs affects the vascular remodeling response to injury.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2021
3-iodothyronamine (3-TAM) has been suggested as a novel chemical messenger and potent trace amine-associated receptor 1 ligand in the CNS that occurs naturally as endogenous metabolite of the thyroid hormones. Discrepancies and variations in 3-TAM plasma and tissue concentrations have nonetheless caused controversy regarding the existence and biological role of 3-TAM. These discussions are at least partially based on potential analytical artefacts caused by differential decay kinetics of 3-TAM and the widely used deuterated quantification standard D-TAM.
View Article and Find Full Text PDFEnvironmental temperature is a driving factor in evolution, and it is commonly assumed that metabolic adaptations to cold climates are the result of transgenerational selection. Here, we show in mice that even minor changes in maternal thermogenesis alter the metabolic phenotype already in the next generation. Male offspring of mothers genetically lacking brown adipose tissue (BAT) thermogenesis display increased lean mass and improved glucose tolerance as adults, while females are unaffected.
View Article and Find Full Text PDFIntroduction: Injection of 3-iodothyronamine into experimental animals profoundly affects their metabolism and body temperature. As 3-iodothyronamine is rapidly acetylated in vivo after injection, it was hypothesized that the metabolites N- or O-acetyl-3-iodothyronamines could constitute the active hormones.
Methods: Adult male mice were injected once daily with one of the metabolites (5 mg/kg body weight intraperitoneally dissolved in 60% DMSO in PBS) or solvent.
Cardiovascular risk factors may act by modulating the composition and function of the adventitia. Here we examine how age affects perivascular adipose tissue (PVAT) and its paracrine activities during neointima formation. Aortic tissue and PVAT or primary aortic smooth muscle cells from male C57BL/6JRj mice aged 52 weeks ("middle-aged") were compared to tissue or cells from mice aged 16 weeks ("adult").
View Article and Find Full Text PDFStimulation of thermogenic pathways appears to be a promising approach to find new ways of tackling metabolic diseases like obesity and diabetes mellitus type 2. Thermogenic, weight reducing and insulin sensitizing effects of phosphodiesterase 5 (PDE 5) inhibitors have recently been postulated, suggesting that modulators of endogenous cGMP signaling have the therapeutic potential to treat metabolic disorders. However, most studies have been performed in vitro or in animals that were not glucose intolerant.
View Article and Find Full Text PDFNesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions.
View Article and Find Full Text PDF3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone (TH)-derived metabolite that induces severe hypothermia in mice after systemic administration; however, the underlying mechanisms have remained enigmatic. We show here that the rapid 3-T1AM-induced loss in body temperature is a consequence of peripheral vasodilation and subsequent heat loss (e.g.
View Article and Find Full Text PDF