Publications by authors named "Sogah D"

The patterning of biologically active materials has been accomplished by the use of imprint lithography of functional photopolymer resins to create controlled nanoscale patterns of a cross-linked photopolymer containing embedded initiator groups. Functionalized polymer brushes consisting of polystyrene and poly(N,N-dimethylacrylamide) were grown from these patterned layers by nitroxide-mediated polymerization. Chain-end functionalization of the brush layer was accomplished by nitroxide radical exchange during the polymerization.

View Article and Find Full Text PDF

The structure and dynamics of polymer-grafted two-dimensional silicate layers in solution were investigated. The geometry of the individual silicate layers was examined by looking at both polarized and depolarized light scattering from dilute solutions, while higher-concentration systems were used to study the interaction and dynamics of polymer-grafted silicate layers in suspension. The form factor for an oblate ellipsoid was used to fit the polarized intensity profile, and values of a approximately 80 nm and b approximately 380 nm for the semi-axes were obtained.

View Article and Find Full Text PDF

The chemokine receptor CCR5 plays an important role in leukocyte chemotaxis and activation, and also acts as a coreceptor for human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). We provide evidence that CCR5 is O-glycosylated on serine 6 in the NH2 terminus. The O-linked glycans, particularly sialic acid moieties, significantly contribute to binding of the chemokine ligands.

View Article and Find Full Text PDF

Selective replacement of the amorphous peptide domain of a spider silk with poly(ethylene glycol) gave N. clavipes silk-inspired polymers having similar solid-state structures and very good mechanical properties. The tendency of poly(alanine) having appropriate chain length to form beta-sheets and the facility with which the beta-sheets self-assemble have been retained in the polymers.

View Article and Find Full Text PDF

Model biomaterial surfaces with well defined chemistry were prepared from close-packed alkyltrichlorosilane monolayers on polished silicon and glass. The outermost molecular groups which come in direct contact with the biological environment were varied across a wide range of oxidation states by employing -CF3, -CH3, -CO2CH3, and -CH2OH terminal functionalities. Characterization by contact angles, surface spectroscopy, and ellipsometry verified that these model surfaces could be repeatedly prepared with good consistency for routine use to study biomolecule adsorption onto model surfaces.

View Article and Find Full Text PDF