Publications by authors named "Sofya Dvoskin"

Background: Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model.

Methods: Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug.

Results: Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice.

View Article and Find Full Text PDF

Clostridium difficile infection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs.

View Article and Find Full Text PDF

N(2)-(3,4-Dichlorobenzyl)-7-(2-[1-morpholinyl]ethyl)guanine (MorE-DCBG, 362E) is a synthetic purine that selectively inhibits the replication-specific DNA polymerase of Clostridium difficile. MorE-DCBG and its analogs strongly inhibited the growth of a wide variety of C. difficile strains.

View Article and Find Full Text PDF

Several 2-anilino- and 2-benzylamino-3-deaza-6-oxopurines [3-deazaguanines] and selected 8-methyl and 8-aza analogs have been synthesized. 7-Substituted N(2)-(3-ethyl-4-methylphenyl)-3-deazaguanines were potent and selective inhibitors of Gram+ bacterial DNA polymerase (pol) IIIC, and 7-substituted N(2)-(3,4-dichlorobenzyl)-3-deazaguanines were potent inhibitors of both pol IIIC and pol IIIE from Gram+ bacteria, but weakly inhibited pol IIIE from Gram- bacteria. Potent enzyme inhibitors in both classes inhibited the growth of Gram+ bacteria (MICs 2.

View Article and Find Full Text PDF