We studied the structure of brushes consisting of branched oligolactide (OLA) chains grafted onto the surface of cellulose nanoparticles (CNPs) in polylactide (PLA) and compared the outcomes to the case of grafting linear OLA chains using atomistic molecular dynamics simulations. The systems were considered in a melt state. The branched model OLA chains comprised one branching point and three branches, while the linear OLA chains examined had a molecular weight similar to the branched chains.
View Article and Find Full Text PDFThe structure of a grafted layer of lactide chains in the "dry brush" regime immersed in a melt of chemically similar polymer was examined while varying graft lengths. To this end, microsecond atomistic molecular dynamics simulations were performed. Almost no influence of graft length on the fraction of the grafted chains backfolded to the grafting surface was found.
View Article and Find Full Text PDF