Publications by authors named "Sofie Vets"

Background: There is a paucity of data on the prevalence, adequate timing, and outcome of solid organ transplantation after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the kinetics of immunoglobulin G (IgG) antibodies in these patients.

Methods: SARS-CoV-2 antinucleocapsid (N) IgG and polymerase chain reaction via a nasopharyngeal swab were analyzed in all patients within 24 h before liver or kidney transplantation. Kinetics of IgG antibodies were analyzed and compared with an immunocompetent cohort.

View Article and Find Full Text PDF

Objectives: Elite controllers (EC) are a rare group of individuals living with HIV-1 who naturally control HIV-1 replication to levels below the limit of detection without antiretroviral therapy (ART) and rarely progress to AIDS. The mechanisms contributing to this control remain incompletely elucidated. In the present study, we have assessed whether cellular host factors could modulate HIV-1 replication post-entry in a controller-discordant couple living with HIV-1.

View Article and Find Full Text PDF

Background: The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation.

View Article and Find Full Text PDF

Distinct integration patterns of different retroviruses, including HIV-1, have puzzled virologists for over 20 years. A tetramer of the viral integrase (IN) assembles on the two viral cDNA ends, docks onto the target DNA (tDNA), and catalyzes viral genome insertion into the host chromatin. We identified the amino acids in HIV-1 IN that directly contact tDNA bases and affect local integration site sequence selection.

View Article and Find Full Text PDF

Stable integration in the host genome renders murine leukemia virus (MLV)-derived vectors attractive tools for gene therapy. Adverse events in otherwise successful clinical trials caused by proto-oncogene activation due to vector integration hamper their application. MLV and MLV-based vectors integrate near strong enhancers, active promoters, and transcription start sites (TSS) through specific interaction of MLV integrase (IN) with the bromodomain and extra-terminal (BET) family of proteins, accounting for insertional mutagenesis.

View Article and Find Full Text PDF

A hallmark of retroviral replication is integration of the viral genome into host cell DNA. This characteristic makes retrovirus-based vectors attractive delivery vehicles for gene therapy. However, adverse events in gene therapeutic trials, caused by activation of proto-oncogenes due to murine leukemia virus (MLV)-derived vector integration, hamper their application.

View Article and Find Full Text PDF

Background: LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN.

Results: Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence.

View Article and Find Full Text PDF

Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units.

View Article and Find Full Text PDF

Background: Lens epithelium-derived growth factor (LEDGF/p75) is a cellular co-factor of HIV-1 integrase (IN) that tethers the viral pre-integration complex to the host cell chromatin and determines the genome wide integration site distribution pattern of HIV-1. Recently, we demonstrated that HIV-1 replication was reduced in LEDGF/p75 knockout (KO) cells. LEDGF/p75 KO significantly altered the integration site preference of HIV-1, but the pattern remained distinct from a computationally generated matched random control set (MRC), suggesting the presence of an alternative tethering factor.

View Article and Find Full Text PDF

The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction.

View Article and Find Full Text PDF

Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out.

View Article and Find Full Text PDF

Lens epithelium-derived growth factor (LEDGF/p75) is an essential cofactor of HIV integration. Both stable overexpression of the C-terminal part of LEDGF/p75 (LEDGF(325-530)) containing the integrase (IN)-binding domain (IBD) and stable knockdown (KD) of LEDGF/p75 are known to inhibit HIV infection in laboratory cell lines. Here, primary human CD(4)(+) T-cells were transduced with lentiviral vectors encoding LEDGF(325-530), the interaction-deficient mutant LEDGF(325-530)D366N, or a hairpin depleting LEDGF/p75 and challenged with HIV.

View Article and Find Full Text PDF

LEDGF/p75 is a chromatin-interacting, cellular cofactor of HIV integrase that dictates lentiviral integration site preference. In this study we determined the role of the PWWP domain of LEDGF/p75 in tethering and targeting of the lentiviral pre-integration complex, employing potent knockdown cell lines allowing analysis in the absence of endogenous LEDGF/p75. Deletion of the PWWP domain resulted in a diffuse subnuclear distribution pattern, loss of interaction with condensed chromatin, and failure to rescue proviral integration, integration site distribution, and productive virus replication.

View Article and Find Full Text PDF

Correction of genetic diseases requires integration of the therapeutic gene copy into the genome of patient cells. Retroviruses are commonly used as delivery vehicles because of their precise integration mechanism, but their use has led to adverse events in which vector integration activated proto-oncogenes and contributed to leukemogenesis. Here, we show that integration by lentiviral vectors can be targeted away from genes using an artificial tethering factor.

View Article and Find Full Text PDF

Gene discovery and gene therapy call for advanced technologies to reliably assess gene expression; efficient coupling of gene expression to the expression of reporter genes is critical. Various noninvasive molecular imaging modalities have emerged to track biological processes in animal models. Here, we evaluate various strategies to link transgene expression with that of an (imaging) reporter gene.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the long-term expression of a transgene and subsequent immune response after the injection of lentiviral vectors in a fetal rats.

Study Design: Fetal rats were injected in the liver, peritoneal cavity, or lung at E19 (term, E21) with a lentiviral vector expressing enhanced green fluorescent protein and luciferase. Controls received saline solution.

View Article and Find Full Text PDF