Publications by authors named "Sofie Van Gassen"

Article Synopsis
  • A new Python implementation of FlowSOM, a clustering method for analyzing cytometry data, has been developed.
  • This version is quicker than the original in R and is designed to efficiently handle single-cell omics data, while retaining all original visualizations like star and pie plots.
  • You can access the FlowSOM Python implementation for free on GitHub at: https://github.com/saeyslab/FlowSOM_Python.
View Article and Find Full Text PDF

Myelodysplastic neoplasms (MDS) encompass haematological malignancies, which are characterised by dysplasia, ineffective haematopoiesis and the risk of progression towards acute myeloid leukaemia (AML). Myelodysplastic neoplasms are notorious for their heterogeneity: clinical outcomes range from a near-normal life expectancy to leukaemic transformation or premature death due to cytopenia. The Molecular International Prognostic Scoring System made progress in the dissection of MDS by clinical outcomes.

View Article and Find Full Text PDF

High-dimensional flow cytometry is the gold standard to study the human immune system in large cohorts. However, large sample sizes increase inter-experimental variation because of technical and experimental inaccuracies introduced by batch variability. Our high-throughput sample processing pipeline in combination with 28-color flow cytometry focuses on increased throughput (192 samples/experiment) and high reproducibility.

View Article and Find Full Text PDF

Background: Malignant peritoneal mesothelioma (MPM) is an aggressive malignancy with a poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival outcomes, but recurrence rates remain high. Dendritic cell-based immunotherapy (DCBI) showed promising results in patients with pleural mesothelioma.

View Article and Find Full Text PDF

Objective: Patients with spondyloarthritis (SpA) often present with microscopic signs of gut inflammation, a risk factor for progressive disease. We investigated whether mucosal innate-like T cells are involved in dysregulated interleukin-23 (IL-23)/IL-17 responses in the gut-joint axis in SpA.

Methods: Ileal and colonic intraepithelial lymphocytes (IELs), lamina propria lymphocytes (LPLs), and paired peripheral blood mononuclear cells (PBMCs) were isolated from treatment-naive patients with nonradiographic axial SpA with (n = 11) and without (n = 14) microscopic gut inflammation and healthy controls (n = 15) undergoing ileocolonoscopy.

View Article and Find Full Text PDF

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen.

View Article and Find Full Text PDF

Background: Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity.

Methods: Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy.

View Article and Find Full Text PDF

Mass cytometry (MC) is a powerful large-scale immune monitoring technology. To maximize MC data quality, we present a protocol for whole blood analysis together with an R package, Cyto Quality Pipeline (CytoQP), which minimizes the experimental artifacts and batch effects to ensure data reproducibility. We describe the steps to stimulate, fix, and freeze blood samples before acquisition to make them suitable for retrospective studies.

View Article and Find Full Text PDF

Introduction: Multiparameter flow cytometry (FCM) immunophenotyping is an important tool in the diagnostic screening and classification of primary immunodeficiencies (PIDs). The EuroFlow Consortium recently developed the PID Orientation Tube (PIDOT) as a universal screening tool to identify lymphoid-PID in suspicious patients. Although PIDOT can identify different lymphoid-PIDs with high sensitivity, clinical validation in a broad spectrum of patients with suspicion of PID is missing.

View Article and Find Full Text PDF

Machine learning (ML) algorithms are increasingly being used to help implement clinical decision support systems. In this new field, we define as "translational machine learning", joint efforts and strong communication between data scientists and clinicians help to span the gap between ML and its adoption in the clinic. These collaborations also improve interpretability and trust in translational ML methods and ultimately aim to result in generalizable and reproducible models.

View Article and Find Full Text PDF

The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration.

View Article and Find Full Text PDF

Background: Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties.

View Article and Find Full Text PDF

In cytometry analysis, a large number of markers is measured for thousands or millions of cells, resulting in high-dimensional datasets. During the measurement of these samples, erroneous events can occur such as clogs, speed changes, slow uptake of the sample etc., which can influence the downstream analysis and can even lead to false discoveries.

View Article and Find Full Text PDF

The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology.

View Article and Find Full Text PDF

Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data.

View Article and Find Full Text PDF

(1) Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology field in the last decade. However, the proportion of patients experiencing a durable response is still limited. In the current study, we performed an extensive immune monitoring in patients with stage III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT.

View Article and Find Full Text PDF

The diagnostic work-up of patients suspected for myelodysplastic syndromes is challenging and mainly relies on bone marrow morphology and cytogenetics. In this study, we developed and prospectively validated a fully computational tool for flow cytometry diagnostics in suspected-MDS. The computational diagnostic workflow consists of methods for pre-processing flow cytometry data, followed by a cell population detection method (FlowSOM) and a machine learning classifier (Random Forest).

View Article and Find Full Text PDF

Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM CD4 cDC2s in the spleen and failed to prime CD4 T cells in response to allogeneic red-blood-cell transfusion.

View Article and Find Full Text PDF

Whole blood is often collected for large-scale immune monitoring studies to track changes in cell frequencies and responses using flow (FC) or mass cytometry (MC). In order to preserve sample composition and phenotype, blood samples should be analyzed within 24 h after bleeding, restricting the recruitment, analysis protocols, as well as biobanking. Herein, we have evaluated two whole blood preservation protocols that allow rapid sample processing and long-term stability.

View Article and Find Full Text PDF

High-dimensional flow cytometry has matured to a level that enables deep phenotyping of cellular systems at a clinical scale. The resulting high-content data sets allow characterizing the human immune system at unprecedented single cell resolution. However, the results are highly dependent on sample preparation and measurements might drift over time.

View Article and Find Full Text PDF

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.

View Article and Find Full Text PDF

Common variable immunodeficiency (CVID) is one of the most frequently diagnosed primary antibody deficiencies (PADs), a group of disorders characterized by a decrease in one or more immunoglobulin (sub)classes and/or impaired antibody responses caused by inborn defects in B cells in the absence of other major immune defects. CVID patients suffer from recurrent infections and disease-related, non-infectious, complications such as autoimmune manifestations, lymphoproliferation, and malignancies. A timely diagnosis is essential for optimal follow-up and treatment.

View Article and Find Full Text PDF

Background: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk.

Objective: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma.

View Article and Find Full Text PDF