Publications by authors named "Sofie Thijs"

In both developed and developing countries, atmospheric pollution with particulate matter (PM) remains an important issue. Despite the health effects of poor air quality, studies on air pollution are often limited by the high costs of continuous monitoring and the need for extensive sampling. Furthermore, these particles are often enriched with potentially toxic trace elements and organic pollutants.

View Article and Find Full Text PDF

Extensive green roofs provide for many ecosystem services in urban environments. The efficacy of these services is influenced by the vegetation structure. Despite their key role in plant performance and productivity, but also their contribution to nitrogen fixation or carbon sequestration, green roof microbial communities have received little attention so far.

View Article and Find Full Text PDF

Industrial development has enhanced the release into the environment of large quantities of chemical compounds with high toxicity and limited prospects of degradation. The pollution of soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative treatment technologies need to be explored. Fungal bioremediation is a promising technology exploiting their metabolic potential to remove or lower the concentrations of xenobiotics.

View Article and Find Full Text PDF
Article Synopsis
  • Growing crops on marginal lands could help address land pressure in Europe, but these crops face challenges like drought and pathogens due to poor soil conditions.
  • The study explored the effects of Silicon (Si) foliar fertilization on spring barley grown under simulated future climate conditions, testing its impact on crop yield and ecosystem processes.
  • Results showed no significant benefits of Si treatment on biomass production or water retention, but there was a notable increase in carbon sequestration under drier conditions, suggesting Si may not be a robust solution for improving crop resilience on nutrient-poor, sandy soils.
View Article and Find Full Text PDF

, a hyperaccumulator plant species known for its metal tolerance and accumulation abilities, harbours a microbiome of interest within its seed. These seed-associated bacteria, often referred to as seed endophytes, play a unique role in seed germination and plant growth and health. This work aimed to address how inoculating seeds of eight different plant species- (alfalfa), (corn), (radish), (sunflower), subsp.

View Article and Find Full Text PDF

To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Bolesław and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used.

View Article and Find Full Text PDF

Salt marshes are highly dynamic, biologically diverse ecosystems with a broad range of ecological functions. We investigated the endophytic bacterial community of surface sterilized seeds of the holoparasitic Cistanche phelypaea growing in coastal salt marshes of the Iberian Peninsula in Portugal. C.

View Article and Find Full Text PDF

The mammalian holobiont harbors a complex and interdependent mutualistic gut bacterial community. Shifts in the composition of this bacterial consortium are known to be a key element in host health, immunity and disease. Among many others, dietary habits are impactful drivers for a potential disruption of the bacteria-host mutualistic interaction.

View Article and Find Full Text PDF

The phylum includes important human pathogens like and and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs.

View Article and Find Full Text PDF

Endophytes within plants are known to be crucial for plant fitness, and while their presence and functions in many compartments have been studied in depth, the research on seed endophytes is still limited. This work aimed to characterize the seed endophytic and rhizospheric bacterial community of two Pb-Zn hyperaccumulator populations, growing on two heavy-metal-polluted sites in Belgium. Cultured representatives were evaluated for their potential to enhance seed germination and root length of the model species .

View Article and Find Full Text PDF

Pollution with microplastics (MPs), nanoplastics (NPs) and trace elements (TEs) remains a considerable threat for mangrove biomes due to their capability to capture pollutants suspended in the water. This study investigated the abundance and composition of plastics and TEs contained in the soil and pneumatophores of sampled in experimental areas (hotel, market, river mouth, port, and rural areas) differentiated in anthropopressure, located in Bima Bay, Indonesia. Polymers were extracted and analyzed with the use of a modified sediment isolation method and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Background: The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce.

Objectives: In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families.

View Article and Find Full Text PDF

The intra- and interdomain phyllosphere microbiome features of L. in a Mediterranean context is reported. We hypothesized that the main driver of the phyllosphere microbiome might be the season and that atmospheric pollutants might have a co-effect.

View Article and Find Full Text PDF

This field study aimed to assess the baseline conditions of a long-term shooting range in Argentina polluted with 428 mg kg lead (Pb) to evaluate the establishment and development of plants and address the efficacy of the phytomanagement strategy through: (i) element accumulation in plant tissues; (ii) rhizosphere bacterial diversity changes by Illumina Miseq™, and (iii) floral water and essential oil yield, composition, and element concentration by GC-MS and ICP. After one life cycle growing in the polluted sites, in the roots of plants, Pb concentration was between 195 and 304 mg kg Pb. Only a limited fraction of the Pb was translocated to the aerial parts.

View Article and Find Full Text PDF

Research on the microbiome has boomed recently, which resulted in a wide range of tools, packages, and algorithms to analyze microbiome data. Here we investigate and map currently existing tools that can be used to perform visual analysis on the microbiome, and associate the including methods, visual representations and data features to the research objectives currently of interest in microbiome research. The analysis is based on a combination of a literature review and workshops including a group of domain experts.

View Article and Find Full Text PDF

The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere.

View Article and Find Full Text PDF

The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg, 5,000 mg Pb kg, and 500 mg Cd kg, is a unique habitat for metallicolous plants, such as L. The purpose of this study was to characterize the association between and its microbial symbionts, i.e.

View Article and Find Full Text PDF

Natural plant-associated microorganisms are of critical importance to plant growth and survival in field conditions under toxic concentrations of trace elements (TE) and these plant-microbial processes can be harnessed to enhance phytoremediation. The total bacterial diversity from grey willow (Salix atrocinerea) on a brownfield heavily-polluted with lead (Pb) and arsenic (As) was studied through pyrosequencing. Culturable bacteria were isolated and in vitro tested for plant growth-promotion (PGP) traits, arsenic (As) tolerance and impact on As speciation.

View Article and Find Full Text PDF

Plants can 'catch' and mitigate airborne pollutants and are assisted by fungi inhabiting their leaves. The structure and function of the fungal communities inhabiting the phyllosphere of hornbeam trees growing in two chronically polluted areas, the oilfield of Bóbrka and the city center of Warsaw, were compared to the ones growing in one nature reserve, the Białowieża National Park. Fungi were isolated and characterized both phylogenetically and functionally for their potential role in air pollution mitigation.

View Article and Find Full Text PDF

Ambient air pollution exerts deleterious effects on our environment. Continuously exposed to the atmosphere, diverse communities of microorganisms thrive on leaf surfaces, the phylloplane. The composition of these communities is dynamic, responding to many environmental factors including ambient air pollution.

View Article and Find Full Text PDF

Heavy metals polluting the 100-year-old waste heap in Bolesław (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, bv.

View Article and Find Full Text PDF

Arsenic (As)-reducing bacteria are able to influence As-speciation and, in this way, change As bio-availability. In consequence, this has an impact on As uptake by plants growing on polluted soil and on the effectiveness of the phytoremediation process. To be able to efficiently utilize these bacteria for As-phytoremediation in the field, a better understanding of the plant-bacterial interactions involved in As-tolerance or toxicity is needed.

View Article and Find Full Text PDF

Background: A diverse community of microbes naturally exists on the phylloplane, the surface of leaves. It is one of the most prevalent microbial habitats on earth and bacteria are the most abundant members, living in communities that are highly dynamic. Today, one of the key challenges for microbiologists is to develop strategies to culture the vast diversity of microorganisms that have been detected in metagenomic surveys.

View Article and Find Full Text PDF

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are widely incorporated in household, consumer and medical products. Their unintentional release via wastewaters raises concerns on their environmental impact, particularly for aquatic organisms and their associated bacterial communities. It is known that the microbiome plays an important role in its host's health and physiology, e.

View Article and Find Full Text PDF