Despite the identification and characterization of various proteins that are essential for peroxisome biogenesis, the origin and the turnover of peroxisomes are still unresolved critical issues. In this study, we used the HaloTag technology as a new approach to examine peroxisome dynamics in cultured mammalian cells. This technology is based on the formation of a covalent bond between the HaloTag protein--a mutated bacterial dehalogenase which is fused to the protein of interest--and a synthetic haloalkane ligand that contains a fluorophore or affinity tag.
View Article and Find Full Text PDFBackground: Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes.
View Article and Find Full Text PDFPex5p, the peroxisomal protein cycling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During its transient passage through the membrane, Pex5p is monoubiquitinated at a conserved cysteine residue, a requisite for its subsequent ATP-dependent export back into the cytosol. Here we describe the properties of the soluble and membrane-bound monoubiquitinated Pex5p species (Ub-Pex5p).
View Article and Find Full Text PDFHere we report a patient with Zellweger syndrome, who presented at the age of 3 months with icterus, dystrophy, axial hypotonia, and hepatomegaly. Abnormal findings of metabolic screening tests included hyperbilirubinaemia, hypoketotic dicarboxylic aciduria, increased C(26:0) and decreased C(22:0) plasma levels, and strongly reduced plasmalogen concentrations. In fibroblasts, both peroxisomal α- and β-oxidation were impaired.
View Article and Find Full Text PDF