Publications by authors named "Sofie Deschoemaeker"

Local delivery of mRNA-based immunotherapy offers a promising avenue as it enables the production of specific immunomodulatory proteins that can stimulate the immune system to recognize and eliminate cancer cells while limiting systemic exposure and toxicities. Here, we develop and employ lipid-based nanoparticles (LNPs) to intratumorally deliver an mRNA mixture encoding the cytokines interleukin (IL)-21 and IL-7 and the immunostimulatory molecule 4-1BB ligand (Triplet LNP). IL-21 synergy with IL-7 and 4-1BBL leads to a profound increase in the frequency of tumor-infiltrating CD8 T cells and their capacity to produce granzyme B and IFN-γ, leading to tumor eradication and the development of long-term immunological memory.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) are at the forefront of activating the immune system to mount an anti-tumor immune response. Flt3L is a cytokine required for DC development that can increase DC abundance in the tumor when administered therapeutically. However, the impact of Flt3L on the phenotype of distinct cDC subsets in the tumor microenvironment is still largely undetermined.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the deadliest gynecological malignancy in developed countries and is the seventh-highest cause of death in women diagnosed with cancer worldwide. Currently, several therapies are in use against OC, including debulking surgery, chemotherapy, as well as targeted therapies. Even though the current standard-of-care therapies improve survival, a vast majority of OC patients relapse.

View Article and Find Full Text PDF

Unlabelled: Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells.

View Article and Find Full Text PDF

Macrophages are diverse immune cells populating all tissues and adopting a unique tissue-specific identity. Breast macrophages play an essential role in the development and function of the mammary gland over one's lifetime. In the recent years, with the development of fate-mapping, imaging and scRNA-seq technologies we grew a better understanding of the origin, heterogeneity and function of mammary macrophages in homeostasis but also during breast cancer development.

View Article and Find Full Text PDF

Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies.

View Article and Find Full Text PDF

Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors.

View Article and Find Full Text PDF

Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation.

View Article and Find Full Text PDF

Tumour hypoxia is a well-established factor of resistance in radiation therapy (RT). Myo-inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen-binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models.

View Article and Find Full Text PDF

Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α.

View Article and Find Full Text PDF

Overcoming resistance to chemotherapy is a major challenge in colorectal cancer (CRC) treatment, especially since the underlying molecular mechanisms remain unclear. We show that silencing of the prolyl hydroxylase domain protein PHD1, but not PHD2 or PHD3, prevents p53 activation upon chemotherapy in different CRC cell lines, thereby inhibiting DNA repair and favoring cell death. Mechanistically, PHD1 activity reinforces p53 binding to p38α kinase in a hydroxylation-dependent manner.

View Article and Find Full Text PDF

Recruitment of tumor-associated macrophages (TAMs) into avascular areas sustains tumor progression; however, the underlying guidance mechanisms are unknown. Here, we report that hypoxia-induced Semaphorin 3A (Sema3A) acts as an attractant for TAMs by triggering vascular endothelial growth factor receptor 1 phosphorylation through the associated holoreceptor, composed of Neuropilin-1 (Nrp1) and PlexinA1/PlexinA4. Importantly, whereas Nrp1 levels are downregulated in the hypoxic environment, Sema3A continues to regulate TAMs in an Nrp1-independent manner by eliciting PlexinA1/PlexinA4-mediated stop signals, which retain them inside the hypoxic niche.

View Article and Find Full Text PDF

The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion.

View Article and Find Full Text PDF

Histidine-rich glycoprotein (HRG) is a 75-kDa heparin-binding plasma protein implicated in the regulation of tumor growth and vascularization. In this study, we show that hrg(-/-) mice challenged with fibrosarcoma or pancreatic carcinoma grow larger tumors with increased metastatic properties. Compared with wild-type mice, fibrosarcomas in hrg(-/-) mice were more hypoxic, necrotic, and less perfused, indicating enhanced vessel abnormalization.

View Article and Find Full Text PDF

PHD2 serves as an oxygen sensor that rescues blood supply by regulating vessel formation and shape in case of oxygen shortage. However, it is unknown whether PHD2 can influence arteriogenesis. Here we studied the role of PHD2 in collateral artery growth by using hindlimb ischaemia as a model, a process that compensates for the lack of blood flow in case of major arterial occlusion.

View Article and Find Full Text PDF