Entanglement is a unique property of quantum systems and an essential resource for many quantum technologies. The ability to transfer or swap entanglement between systems is an important protocol in quantum information science. Entanglement swapping between photons forms the basis of distributed quantum networks.
View Article and Find Full Text PDFWhen a low flux of time-frequency-entangled photon pairs (EPP) illuminates a two-photon transition, the rate of two-photon absorption (TPA) can be enhanced considerably by the quantum nature of photon number correlations and frequency correlations. We use a quantum-theoretic derivation of entangled TPA (ETPA) and calculate an upper bound on the amount of quantum enhancement that is possible in such systems. The derived bounds indicate that in order to observe ETPA the experiments would need to operate at a combination of significantly higher rates of EPP illumination, molecular concentrations, and conventional TPA cross sections than are achieved in typical experiments.
View Article and Find Full Text PDF