Publications by authors named "Sofia Xirou"

Background: The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far.

Methods: We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences.

View Article and Find Full Text PDF

Background: Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised.

Material And Methods: In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS.

View Article and Find Full Text PDF

Background: In contrast to myotonic dystrophy type 1, the cognitive and radiologic profile of myotonic dystrophy type 2 (DM2) is relatively poorly characterized.

Objective: To conduct a pilot study to systematically evaluate cognitive and radiologic features in a cohort of Greek individuals with DM2.

Method: Eleven genetically confirmed individuals with DM2 and 26 age- and education-matched healthy controls were administered the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS) to screen for impairment in multiple cognitive domains.

View Article and Find Full Text PDF

Dysfunction of social cognition is well-recognized as one of amyotrophic lateral sclerosis (ALS) cognitive impairments. Previous studies have mostly associated social cognition subcomponents, including Theory of Mind (ToM), with executive dysfunction using highly-demanding tasks. In the present study, we investigate dysfunction of affective ToM in a sample of ALS patients without dementia and evaluate any possible associations both with executive and non-executive dysfunction.

View Article and Find Full Text PDF

Myotonic dystrophies (DMs) are hereditary, multisystem, slowly progressive myopathies. One of the systems they affect is the CNS. In contrast to the well-established cognitive profile of myotonic dystrophy type 1 (DM1), only a few studies have investigated cognitive dysfunction in individuals with myotonic dystrophy type 2 (DM2), and their findings have been inconsistent.

View Article and Find Full Text PDF

A prospective, standardised neuroimaging protocol was implemented to characterise mesial temporal lobe pathology in amyotrophic lateral sclerosis, Alzheimer's disease and healthy controls focusing on the evaluation of interconnected white and grey matter structures. "Hippocampal pathology in Amyotrophic Lateral Sclerosis: selective vulnerability of subfields and their associated projections" [1]. High-resolution diffusion tensor and structural imaging data were acquired on a 3 T MRI platform using standardised sequence parameters.

View Article and Find Full Text PDF

Although hippocampal involvement in amyotrophic lateral sclerosis (ALS) has been consistently highlighted by postmortem studies, memory impairment remains under-recognized and the involvement of specific hippocampal subfields and their connectivity patterns are poorly characterized in vivo. A prospective multimodal neuroimaging study has been undertaken with 50 well-characterized ALS patients, 18 patients with Alzheimer's disease, and 40 healthy controls to evaluate their mesial temporal lobe profile. Patients with ALS and Alzheimer's disease have divergent hippocampal signatures.

View Article and Find Full Text PDF

Accumulation of normal or mutant human Tau isoforms in Central Nervous System (CNS) neurons of vertebrate and invertebrate models underlies pathologies ranging from behavioral deficits to neurodegeneration that broadly recapitulate human Tauopathies. Although some functional differences have begun to emerge, it is still largely unclear whether normal and mutant Tau isoforms induce differential effects on the synaptic physiology of CNS neurons. We use the oligosynaptic Giant Fiber System in the adult Drosophila CNS to address this question and reveal that 3R and 4R isoforms affect distinct synaptic parameters.

View Article and Find Full Text PDF