Publications by authors named "Sofia Triantafillou"

Treatments often come with thresholds, e.g. we are given statins if our cholesterol is above a certain threshold.

View Article and Find Full Text PDF

Causal discovery is continually being enriched with new algorithms for learning causal graphical probabilistic models. Each one of them requires a set of hyperparameters, creating a great number of combinations. Given that the true graph is unknown and the learning task is unsupervised, the challenge to a practitioner is how to tune these choices.

View Article and Find Full Text PDF

Model explainability is essential for the creation of trustworthy Machine Learning models in healthcare. An ideal explanation resembles the decision-making process of a domain expert and is expressed using concepts or terminology that is meaningful to the clinicians. To provide such explanation, we first associate the hidden units of the classifier to clinically relevant concepts.

View Article and Find Full Text PDF

Rates of preterm birth and low birthweight continue to rise in the United States and pose a significant public health problem. Although a variety of environmental exposures are known to contribute to these and other adverse birth outcomes, there has been a limited success in developing policies to prevent these outcomes. A better characterization of the complexities between multiple exposures and their biological responses can provide the evidence needed to inform public health policy and strengthen preventative population-level interventions.

View Article and Find Full Text PDF

Background: Sleep disturbances play an important role in everyday affect and vice versa. However, the causal day-to-day interaction between sleep and mood has not been thoroughly explored, partly because of the lack of daily assessment data. Mobile phones enable us to collect ecological momentary assessment data on a daily basis in a noninvasive manner.

View Article and Find Full Text PDF

Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated  causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications.

View Article and Find Full Text PDF