Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2022
Exposure of young organisms to oestrogenic endocrine disrupting chemicals (EDCs) can elicit adverse effects, particularly on the reproductive function. In fish, as in other vertebrates, reproduction is controlled by the neuroendocrine gonadotropic axis, whose components are mainly regulated by sex steroids and may then be targets for EDCs. In the present study, we investigated the effects of a xenoestrogen exposure on the ontogenesis of the gonadotropic axis in European sea bass.
View Article and Find Full Text PDFThe copepod Calanus finmarchicus is an ecologically important species in the North Atlantic, Norwegian and Barents seas. Accidental or continuous petroleum pollution from oil and gas production in these seas may pose a significant threat to this low trophic level keystone species. Responses related to oxidative stress, protein damage and lipid peroxidation were investigated in C.
View Article and Find Full Text PDFRegulatory assessment of the effects of chemicals requires the availability of validated tests representing different environments and organisms. In this context, developing new tests is particularly needed for marine species from temperate environments. It is also important to evaluate effects that are generally poorly characterized and seldom included in regulatory tests.
View Article and Find Full Text PDF