Stereocomplexation of poly(L-lactide) (PLLA) with star shaped D-lactic acid (D-LA) oligomers with different architectures and end-groups clearly altered the degradation rate and affected the degradation product patterns. Altogether, nine materials were studied: standard PLLA and eight blends of PLLA with either 30 or 50 wt % of four different D-LA oligomers. The influence of several factors, including temperature, degradation time, and amount and type of D-LA oligomer, on the hydrolytic degradation process was investigated using a fractional factorial experimental design.
View Article and Find Full Text PDFThe possibility to tune the hydrolytic degradation rate of polylactide by plasticizer architecture and hydrophilicity without introduction of new degradation products was investigated by subjecting polylactide with cyclic oligolactide and linear oligolactic acid additives to hydrolytic degradation at 37 and 60 °C for up to 39 weeks. The more hydrophilic oligolactic acid plasticizer led to larger water uptake and rapid migration of plasticizer from the films into the aging water. This resulted in a porous material more susceptible to further hydrolysis.
View Article and Find Full Text PDFPoly-l-lactide/poly-d-lactide (PLLA/PDLA) stereocomplex had much higher hydrolytic stability compared to plain PLLA, but at the same time shorter and more acidic degradation products were formed. Both materials were subjected to hydrolytic degradation in water and in phosphate buffer at 37 and 60 degrees C, and the degradation processes were monitored by following mass loss, water uptake, thermal properties, surface changes, and pH of the aging medium. The degradation product patterns were determined by electrospray ionization-mass spectrometry (ESI-MS).
View Article and Find Full Text PDF