Publications by authors named "Sofia R Fernandes"

Neuroplasticity is an essential mechanism by which the nervous system shapes and adapts according to functional requirements. Evidence suggests that physical exercise induces a cascade of cellular processes that favours brain plasticity. The Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin closely linked to neuroplasticity that can be increased due to exercise.

View Article and Find Full Text PDF

Electrical stimulation (ES) has been described as a promising tool for bone tissue engineering, being known to promote vital cellular processes such as cell proliferation, migration, and differentiation. Despite the high variability of applied protocol parameters, direct coupled electric fields have been successfully applied to promote osteogenic and osteoinductive processes in vitro and in vivo. Our work aims to study the viability, proliferation, and osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells when subjected to five different ES protocols.

View Article and Find Full Text PDF

Over the last decade, transcranial direct current stimulation (tDCS) has been applied not only to modulate local cortical activation, but also to address communication between functionally-related brain areas. Stimulation protocols based on simple two-electrode placements are being replaced by multi-electrode montages to target intra- and inter-hemispheric neural networks using multichannel/high definition paradigms..

View Article and Find Full Text PDF

Bioreactors have been employed in tissue engineering to sustain longer and larger cell cultures, managing nutrient transfer and waste removal. Multiple designs have been developed, integrating sensor and stimulation technologies to improve cellular responses, such as proliferation and differentiation. The variability in bioreactor design, stimulation protocols, and cell culture conditions hampered comparison and replicability, possibly hiding biological evidence.

View Article and Find Full Text PDF

Introduction: The excitability of spinal motor neurons (MN) can be altered through subthreshold currents, such as transcutaneous spinal direct-current stimulation (tsDCS). Current evidence shows that tsDCS can interfere with ascending somatosensory pathways and lower motor neurons' (LMN) excitability, which points to its therapeutic potential for repairing altered spinal responses. We aim to define the best tsDCS montage for maximizing the electric field (E-field) in the lumbar spinal cord (L-SC) by computer modeling; and to apply this montage to measure the effect on LMN excitability and somatosensory evoked potentials (SSEP).

View Article and Find Full Text PDF

Multichannel transcranial direct current stimulation (tDCS) is a promising approach to target neuromodulation of neural networks by making use of variable number of electrodes and distances to facilitate/inhibit specific connectivity patterns. Optimization of the electric field (EF) spatial distribution through computational models can provide a more accurate definition of the stimulation settings that are more effective. In this study, we investigate the effect of increasing the number of cathodes around a central anode placed over the target.

View Article and Find Full Text PDF

Background: Pulmonary function tests are routinely used to measure progression in ALS. This study aimed to assess the change of various respiratory tests, in particular maximal voluntary ventilation (MVV), which evaluates respiratory endurance.

Methods: A group of 51 patients were assessed 3 times (T1, T2, T3, separated by 5.

View Article and Find Full Text PDF

In tissue engineering, cell culture scaffolds have been widely used in combination with electrical stimulation to promote multiple cellular outcomes, like differentiation and proliferation. Nevertheless, the influence of scaffolds on the electric field delivered inside a bioreactor is often ignored and requires a deeper study. By performing numerical analysis in a capacitively coupled setup, this work aimed to predict the effects of the scaffold presence on the electric field, considering multiple combinations of scaffold and culture medium electrical properties.

View Article and Find Full Text PDF

Objective: Dornase alfa (rhDNase) reduces the viscosity of purulent sputum in the lungs. The use in patients with cystic fibrosis (CF) is proven. However, the evidence of its applicability to other conditions is limited.

View Article and Find Full Text PDF

The use of digital twins in tissue engineering (TE) applications is of paramount importance to reduce the number of in vitro and in vivo tests. To pursue this aim, a novel multimodal bioreactor is developed, combining 3D design with numerical stimulation. This approach will facilitate the reproducibility between studies and the platforms optimisation (physical and digital) to enhance TE.

View Article and Find Full Text PDF

Background: Trans-spinal direct current stimulation (tsDCS) is a non-invasive technique with promising neuromodulatory effects on spinal cord (SC) circuitry. Computational studies are essential to guide effective tsDCS protocols for specific clinical applications. This study aims to combine modelling and experimental studies to determine the electrode montage that maximizes electric field (E-field) delivery during cervical tsDCS.

View Article and Find Full Text PDF

Objective: Trans-spinal direct current stimulation (tsDCS) is a promising technique to modulate spinal circuits. Combining clinical with modelling studies can improve effectiveness of tsDCS protocols. The aim of this study is to measure the effects of lumbar tsDCS on motor spinal responses and observe if these are consistent with the electric field (E-field) predicted from a computational model.

View Article and Find Full Text PDF

Objective: Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions.

Approach: A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled.

View Article and Find Full Text PDF

Noninvasive electrical stimulation of the central nervous system is attracting increasing interest from the clinical and academic communities as well as from high-tech companies. This interest was sparked by two landmark studies conducted in 2000 and 2001 at the University of G?ttingen, Germany. Michael Nitsche and Walter Paulus showed that by passing a weak, almost imperceptible electric current between two electrodes on the scalp, they could alter the way the human brain responds to stimuli and that the effect persisted for some time after the current was stopped.

View Article and Find Full Text PDF

Non-invasive brain and spinal cord stimulation techniques are increasingly used for diagnostic and therapeutic purposes. Knowledge of the spatial distribution of the induced electric field is necessary to interpret experimental results and to optimize field delivery. Since the induced electric field cannot be measured in vivo in humans, computational models play a fundamental role in determining the characteristics of the electric field.

View Article and Find Full Text PDF

Tumor treating fields (TTFields) is a therapy that inhibits cell proliferation and has been approved by the U.S Food and Drug Administration (FDA) for the treatment of Glioblastoma Multiforme. This anti-mitotic technique works non-invasively and regionally, and is associated with less toxicity and a better quality of life.

View Article and Find Full Text PDF

The use of computational modeling studies accounts currently for the best approach to predict the electric field (E-field) distribution in transcranial direct current stimulation. As with any model, the values attributed to the physical properties, namely the electrical conductivity of the tissues, affect the predicted E-field distribution. A wide range of values for the conductivity of most tissues is reported in the literature.

View Article and Find Full Text PDF

Previous studies have indicated potential neuromodulation of the spinal circuitry by transcutaneous spinal direct current stimulation (tsDCS), such as changes in motor unit recruitment, shortening of the peripheral silent period and interference with supraspinal input to lower motor neurons. All of these effects were dependent on the polarity of the electrodes. The present study investigates how the distance between the electrodes during tsDCS influences the electric field's (E-field) spatial distribution in the lumbar and sacral spinal cord (SC).

View Article and Find Full Text PDF

Transcutaneous spinal direct current stimulation (tsDCS) is a recent technique with promising neuromodulatory effects on spinal neuronal circuitry. The main objective of the present study was to perform a finite element analysis of the electric field distribution in tsDCS in the cervical spine region, with varying electrode configurations and geometry. A computational model of a human trunk was generated with nine tissue meshes.

View Article and Find Full Text PDF