Western corn rootworm (WCR), a major pest of corn, has been reared in laboratories since the 1960s. While established rearing methods are appropriate for maintaining WCR colonies, they are not optimal for performing germline transformation or CRISPR/Cas9-based genome editing. Here we report the development of an optimized rearing system for use in WCR functional genomics research, specifically the development of a system that facilitates the collection of preblastoderm embryos for microinjection as well as gathering large larvae and pupae for downstream phenotypic screening.
View Article and Find Full Text PDFThe gene vermilion encodes tryptophan 2,3-dioxygenase, part of the ommochrome pathway, and is responsible for the dark pigmented eyes in some insects, including beetles. Using RNA interference, we targeted the vermilion gene ortholog in embryos and pupae of the yellow mealworm, Tenebrio molitor, resulting in larvae and adults, respectively, that lacked eye pigment. RNA-Seq was used to analyze the impact of vermilion-specific RNA interference on gene expression.
View Article and Find Full Text PDFThe western corn rootworm (WCR) is an important pest of corn and is well known for its ability to rapidly adapt to pest management strategies. Although RNA interference (RNAi) has proved to be a powerful tool for studying WCR biology, it has its limitations. Specifically, RNAi itself is transient (i.
View Article and Find Full Text PDF