A protocol based on the combination of different analytical methodologies is proposed to standardize the experimental conditions for reproducible formulations of hybrid hydrogels. The final hybrid material, based on the combination of gelatin and chitosan functionalized with methylfuran and cross-linked with 4-arm-PEG-maleimide, is able to mimic role, dynamism, and structural complexity of the extracellular matrix. Physical-chemical properties of starting polymers and finals constructs were characterized exploiting the combination of HP-SEC-TDA, UV, FT-IR, NMR, and TGA.
View Article and Find Full Text PDFThe development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties.
View Article and Find Full Text PDFSynthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than , great efforts in materials chemistry have been devoted to reproducing behavior in cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs.
View Article and Find Full Text PDFTattoo colorants decompose under solar radiation and when exposed to laser light for their removal, leading to the accumulation in the dermis of toxic products. Aim of this study was to develop lipid microparticles (LMs) loaded with the colorant, Acid Red 87 (C.I.
View Article and Find Full Text PDF