Publications by authors named "Sofia M Kapetanaki"

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources.

View Article and Find Full Text PDF

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin.

View Article and Find Full Text PDF
Article Synopsis
  • Heme plays a key role in helping the bacterium Rhodobacter sphaeroides control when to make proteins for photosynthesis by interacting with two proteins called AppA and PpsR.
  • Scientists used special techniques to study how heme binds to PpsR and affects its behavior, showing that this binding changes how the proteins work together.
  • The research found that when heme attaches to PpsR, it helps the protein stick to DNA better, showing how heme is important for controlling gene activity in these bacteria.
View Article and Find Full Text PDF

Blue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics.

View Article and Find Full Text PDF

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation.

View Article and Find Full Text PDF

Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function.

View Article and Find Full Text PDF

Raman microspectroscopy has been used to monitor changes in the redox and ligand-coordination states of the heme complex in myoglobin during the preconditioning of ex vivo cardiomyocytes with pharmacological drugs that release nitric oxide (NO). These chemical agents are known to confer protection on heart tissue against ischemia-reperfusion injury. Subsequent changes in the redox and ligand-coordination states during experimental simulations of ischemia and reperfusion have also been monitored.

View Article and Find Full Text PDF

Mammalian mitochondrial cytochrome c interacts with cardiolipin to form a complex (cyt. c/CL) important in apoptosis. Here we show that this interaction leads to structural changes in ferrocytochrome c that leads to an open coordinate site on the central iron, resulting from the dissociation of the intrinsic methionine residue, where NO can rapidly bind (k = 1.

View Article and Find Full Text PDF

The interaction of mitochondrial cytochrome (cyt) c with cardiolipin (CL) is involved in the initial stages of apoptosis. This interaction can lead to destabilization of the heme-Met80 bond and peroxidase activity [Basova, L. V.

View Article and Find Full Text PDF

The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron.

View Article and Find Full Text PDF

Mycobacterium tuberculosis catalase-peroxidase (Mtb KatG) is a bifunctional enzyme that possesses both catalase and peroxidase activities and is responsible for the activation of the antituberculosis drug isoniazid. Mtb KatG contains an unusual adduct in its distal heme-pocket that consists of the covalently linked Trp107, Tyr229, and Met255. The KatG(Y229F) mutant lacks this adduct and has decreased steady-state catalase activity and enhanced peroxidase activity.

View Article and Find Full Text PDF

The reaction of Mycobacterium tuberculosis KatG and the mutant KatG(S315T) with two different organic peroxides is studied using resonance Raman spectroscopy. For the first time, an intermediate is observed in a catalase-peroxidase with vibrations that are characteristic of Compound II. The observation of this intermediate is consistent with photoreduction of Compound I and is in agreement with the formation of Compound I during the catalytic cycle of KatG.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) KatG is a catalase-peroxidase that is thought to activate the antituberculosis drug isoniazid (INH). The local environment of Mtb KatG and its most prevalent INH-resistant mutant, KatG(S315T), is investigated with the exogenous ligands CO and NO in the absence and presence of INH by using resonance Raman, FTIR, and transient absorption spectroscopy. The Fe-His stretching vibration is detected at 244 cm(-)(1) in the ferrous forms of both the wild-type enzyme and KatG(S315T).

View Article and Find Full Text PDF

Transient absorption spectroscopy is used to demonstrate that the electric dipole moment of the substrate cyclobutane thymine dimer affects the charge recombination reaction between fully reduced flavin adenine dinucleotide (FADH-) and the neutral radical tryptophan 306 (Trp306*) in Escherichia coli DNA photolyase. At pH 7.4, the charge recombination is slowed by a factor of 1.

View Article and Find Full Text PDF