Publications by authors named "Sofia Loren Butarbutar"

A reliable understanding of radiolysis processes in supercritical water (SCW)-cooled reactors is crucial to developing chemistry control strategies that minimize the corrosion and degradation of materials. However, directly measuring the chemistry in reactor cores is difficult due to the extreme conditions of high temperature and pressure and mixed neutron and gamma-radiation fields, which are incompatible with normal chemical instrumentation. Thus, chemical models and computer simulations are an important route of investigation for predicting the detailed radiation chemistry of the coolant in a SCW reactor and the consequences for materials.

View Article and Find Full Text PDF

Monte Carlo simulations were used to calculate the yields for the primary species (e(-)aq, H(•), H2, (•)OH and H2O2) formed from the radiolysis of neutral liquid water by mono-energetic 2 MeV neutrons at temperatures between 25-350°C. The 2 MeV neutron was taken as representative of a fast neutron flux in a reactor. For light water, the moderation of these neutrons generated elastically scattered recoil protons of ∼1.

View Article and Find Full Text PDF