We describe a methodology of post-polymerization functionalization to enable subsequent bulk depolymerization to monomer by utilizing mechanochemical macro-radical generation. By harnessing ultrasonic chain-scission in the presence of N-hydroxyphthalimide methacrylate (PhthMA), we successfully chain-end functionalize polymers to promote subsequent depolymerization in bulk, achieving up to 82 % depolymerization of poly(methyl methacrylate) (PMMA) and poly(α-methylstyrene) (PAMS) within 30 min. This method of depolymerization yields a high-purity monomer that can be repolymerized.
View Article and Find Full Text PDFIncreasing applications of nanoparticles (NPs) in agriculture have raised potential risks to soil and aquatic ecosystems. A comparative study examining the transport of commonly used NPs in porous media is of critical significance for their application and regulation in agroecosystems. In this study, laboratory column leaching experiments were conducted to investigate the transport and retention of polysuccinimide NPs (PSI-NPs) in two saturated porous media with different grain sizes, as compared with multi-walled carbon nanotubes (MWCNTs), nano-Ag and nano-TiO.
View Article and Find Full Text PDFPlant seedlings are susceptible to copper (Cu) toxicity. As copper levels in soil continue to rise with the use of Cu-based agrochemicals, alleviation of Cu stress is of paramount importance. Traditional approaches to allay Cu stress are well documented but are typically found to be either costly or inefficient.
View Article and Find Full Text PDF