Publications by authors named "Sofia Kantorovich"

Magnetic nanogels (MNGs) are highly attractive for biomedical applications because of their potential for remote control of the rheology and internal structure of these soft colloids with biocompatible magnetic fields. In this contribution, using molecular dynamics simulations, we investigate the impact of the cross-linker distribution in the body of a MNG on the shape and magnetic response to constant and AC magnetic fields and relate those properties to the behaviour of non-magnetic tracers placed in the MNGs and left to escape. We find that if no AC magnetic field is applied, although the escape times of the tracer particles barely depend on morphology, the highest degree of subdiffusion is observed for the gels with a non-uniform cross-linkerer distribution.

View Article and Find Full Text PDF

We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core.

View Article and Find Full Text PDF

In this research, we employ Brownian dynamics simulations, density functional theory, and mean-field theory to explore the profound influence of shape anisotropy of magnetic nanoplatelets on suspension magnetic response. Each platelet is modelled as an oblate cylinder with a longitudinal point dipole, with an emphasis on strong dipolar interactions conducive to self-assembly. We investigate static structural and magnetic properties, characterising the system through pair distribution function, static structure factor, and cluster-size distribution.

View Article and Find Full Text PDF

Nowadays, magnetoresponsive soft materials, based not simply on magnetic nanoparticles but rather on multiple components with distinct sizes and magnetic properties in both liquid and polymeric carriers, are becoming more and more widespread due to their unique and versatile macroscopic response to an applied magnetic field. The variability of the latter is related to a complex interplay of the magnetic interactions in a highly nonuniform internal field caused by spatial inhomogeneity in multicomponent systems. In this work, we present a combined analytical and simulation study of binary superparamagnetic systems containing nanoclusters and dispersed single-domain nanoparticles in both liquid and solid carrier matrices.

View Article and Find Full Text PDF

We are exploring in experiments the aggregation process in a shaken granular mixture of glass and magnetized steel beads, filled in a horizontal vessel, after the shaking amplitude is suddenly decreased. Then the magnetized beads form a transient network that coarsens in time into compact clusters, resembling a viscoelastic phase separation [Tanaka, J. Phys.

View Article and Find Full Text PDF

The idea of creating polymer-like structures by crosslinking magnetic nanoparticles (MNPs) opened an alternative perspective on controlling the rheological properties of magnetoresponsive systems, because unlike suspensions of self-assembled MNPs, whose cluster sizes are sensitive to temperature, magnetic filaments (MFs) preserve their initial topology. Considering the length scales characteristic of single-domain nanoparticles used to create MFs, the MNPs can be both ferro- and superparamagnetic. Moreover, steric or electrostatic stabilization might not fully screen van der Waals interactions.

View Article and Find Full Text PDF

The necessity to improve magnetic building blocks in magnetic nano-structured soft materials stems from a fascinating potential these materials have in bio-medical applications and nanofluidics. Along with practical reasons, the interplay of magnetic and steric interactions on one hand, and entropy, on the other, makes magnetic soft matter fundamentally challenging. Recently, in order to tailor magnetic response of the magnetic particle suspensions, the idea arose to replace standard single-core nanoparticles with nano-sized clusters of single-domain nanoparticles (grains) rigidly bound together by solid polymer matrix - multicore magnetic nanoparticles (MMNPs).

View Article and Find Full Text PDF

In this work we employ molecular dynamics simulations to investigate the first-order-reversal-curve distribution and switching-field distribution of magnetic elastomers. We model magnetic elastomers in a bead-spring approximation with permanently magnetized spherical particles of two different sizes. We find that a different fractional composition of particles affects the magnetic properties of elastomers obtained as a result.

View Article and Find Full Text PDF

In recent years, there has been an increasing interest in magnetic nanoparticles with non-spherical shapes. This is largely due to their broad span of tuneable properties, which allow for tailoring of the colloidal properties by altering the magnetic anisometry or shape anisotropy of the nanoparticle. Although extensive research has gone into novel synthesis methods, the theoretical and analytical treatment of magnetic colloidal suspensions still predominantly focuses on spherical particles.

View Article and Find Full Text PDF

We present a numerical study of the effects of monomer shape and magnetic nature of colloids on the behavior of a single magnetic filament subjected to the simultaneous action of shear flow and a stationary external magnetic field perpendicular to the flow. We find that based on the magnetic nature of monomers, magnetic filaments exhibit a completely different phenomenology. Applying an external magnetic field strongly inhibits tumbling only for filaments with ferromagnetic monomers.

View Article and Find Full Text PDF

Directional assembly of nanoscale objects results in morphologies that can broadly be classified as supra-molecular nanopolymers. Such morphologies, given a functional choice of the monomers used as building blocks, can be of ubiquitous utility in optical, magnetic, rheological, and medical applications. These applications, however, require a profound understanding of the interplay between monomer shape and bonding on one side, and polymeric properties - on the other.

View Article and Find Full Text PDF

Supramolecular magnetic polymerlike (SMP) structures are nanoscaled objects that combine the flexibility of polymeric conformations and controllability of magnetic nanoparticles. The advantage provided by the presence of permanent cross-linkers is that even at high temperature, a condition at which entropy dominates over magnetic interactions, the length and the topology of the SMP structures are preserved. On cooling, however, preexistent bonds constrain thermodynamically equilibrium configurations, making a low-temperature regime for SMP structures worth investigating in detail.

View Article and Find Full Text PDF

Using the combination of experiment and molecular dynamics simulations, we investigate structural transformations in magnetic elastomers with NdFeB flake-like particles, caused by applied moderate magnetic fields. We explain why and how those transformations depend on whether or not the samples are initially cured by a short-time exposure to a strong field. We find that in a cured sample, a moderate magnetic field leads mainly to in-place flake rotations that are fully reversed once the applied field is switched off.

View Article and Find Full Text PDF

Assembly of nanoscale objects into linear architectures resembling molecular polymers is a basic organization resulting from divalent interactions. Such linear architectures occur for particles with two binding patches on opposite sides, known as Janus particles. However, unlike molecular systems where valence bonds can be envisioned as pointlike interactions nanoscale patches are often realized through multiple molecular linkages.

View Article and Find Full Text PDF

The term "active matter" describes a class of out-of-equilibrium systems, whose ability to transform environmental to kinetic energy is sought after in multiple fields of science. A challenge that still remains is to craft nanometer-sized active particles, whose motion can be efficiently directed by externally applied bio-noninvasive stimuli. Adding a magnetic component and therefore being able to direct the motion of active nanoparticles with an applied magnetic field is one of the promising solutions in the field.

View Article and Find Full Text PDF

In the present paper, we study the self-diffusion of aggregating magnetic particles in bidisperse ferrofluids. We employ density functional theory (DFT) and coarse-grained molecular dynamics (MD) simulations to investigate the impact of granulometric composition of the system on the cluster self-diffusion. We find that the presence of small particles leads to the overall increase of the self-diffusion rate of clusters due the change in cluster size and composition.

View Article and Find Full Text PDF

Extensive Langevin dynamics simulations are used to characterize the adsorption transition of a flexible magnetic filament grafted onto an attractive planar surface. Our results identify different structural transitions at different ratios of the thermal energy to the surface attraction strength: filament straightening, adsorption, and the magnetic flux closure. The adsorption temperature of a magnetic filament is found to be higher in comparison to an equivalent nonmagnetic chain.

View Article and Find Full Text PDF

With the help of molecular dynamics simulations we show that an arbitrary nonmagnetic active particle with a size below one micrometer, being immersed in a suspension of magnetic nanoparticles, can diffuse faster along the direction of an applied field than perpendicular to the latter. This effect is demonstrated in monodisperse and polydisperse systems of magnetic nanoparticles for magnetic fields of moderate strength. The ability to direct a nonmagnetic active particle along the magnetic field stems from the formation of chains of magnetic nanoparticles aligned with the field direction.

View Article and Find Full Text PDF

Correction for 'Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields' by Deniz Mostarac et al., Nanoscale, 2020, DOI: .

View Article and Find Full Text PDF

Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such structures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently crosslinked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily tuneable computational models, where we consider two distinct crosslinking approaches, for both ferromagnetic and super-paramagnetic monomers.

View Article and Find Full Text PDF

In this work, we show how and why the interactions between charged cubic colloids range from radially isotropic to strongly directionally anisotropic, depending on tuneable factors. Using molecular dynamics simulations, we illustrate the effects of typical solvents to complement experimental investigations of cube assembly. We find that in low-salinity water solutions, where cube self-assembly is observed, the colloidal shape anisotropy leads to the strongest attraction along the corner-to-corner line, followed by edge-to-edge, with a face-to-face configuration of the cubes only becoming energetically favorable after the colloids have collapsed into the van der Waals attraction minimum.

View Article and Find Full Text PDF

Unlike Stockmayer fluids, that prove to undergo gas-liquid transition on cooling, the system of dipolar hard or soft spheres without any additional central attraction so far has not been shown to have a critical point. Instead, in the latter, one observes diverse self-assembly scenarios. Crosslinking dipolar soft spheres into supracolloidal magnetic polymer-like structures (SMPs) changes the self-assembly behaviour.

View Article and Find Full Text PDF

In the present work magnetic brushes under flow conditions and confined inside narrow slits have been studied using Langevin dynamics simulations. It has been observed that the structural properties of these confined magnetic brushes can be tuned via the application of an external magnetic field, and this control can be exerted with a relatively low content of magnetic colloidal particles in the filaments that form the brushes (20% in the present study). The potential of these brushes to perform a separation process of a size-bidispersed mixture of free non-magnetic colloidal particles flowing through the slit has also been explored.

View Article and Find Full Text PDF

Particle dispersions provide a promising tool for the engineering of functional materials that exploit self-assembly of complex structures. Dispersion made from magnetic colloidal particles is a great choice; they are biocompatible and remotely controllable among many other advantages. However, their dominating dipolar interaction typically limits structural complexity to linear arrangements.

View Article and Find Full Text PDF

We analyze theoretically the field-induced microstructural deformations in a hybrid elastomer, that consists of a polymer matrix filled with a mixture of magnetically soft and magnetically hard spherical microparticles. These composites were introduced recently in order to obtain a material that allows the tuning of its properties by both, magnetically active and passive control. Our theoretical analysis puts forward two complementary models: a continuum magnetomechanical model and a bead-spring computer simulation model.

View Article and Find Full Text PDF