Mutations in the human gene encoding contactin-associated protein-like 2 (CNTNAP2) have been strongly associated with autism spectrum disorders (ASDs). Cntnap2(-/-) mice recapitulate major features of ASD, including social impairment, reduced vocalizations, and repetitive behavior. In addition, Cntnap2(-/-) mice show reduced cortical neuronal synchrony and develop spontaneous seizures throughout adulthood.
View Article and Find Full Text PDFBackground: Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process.
Objective: Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury.
Wallerian degeneration (WD) comprises a series of events that includes activation of non-neuronal cells and recruitment of immune cells, creating an inflammatory milieu that leads to extensive nerve fragmentation and subsequent clearance of the myelin debris, both of which are necessary prerequisites for effective nerve regeneration. Previously, we documented accelerated axon regeneration in animals lacking galectin-3 (Gal-3), a molecule associated with myelin clearance. To clarify the mechanisms underlying this enhanced regeneration, we focus here on the early steps of WD following sciatic nerve crush in Gal-3(-/-) mice.
View Article and Find Full Text PDFIn Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor.
View Article and Find Full Text PDFSoluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs.
View Article and Find Full Text PDFSoluble amyloid-β peptide (Aβ) oligomers, known to accumulate in Alzheimer's disease brains, target excitatory post-synaptic terminals. This is thought to trigger synapse deterioration, a mechanism possibly underlying memory loss in early stage Alzheimer's disease. A major unknown is the identity of the receptor(s) targeted by oligomers at synapses.
View Article and Find Full Text PDFJ Mol Neurosci
January 2010
Dysfunctional cholinergic transmission is thought to underlie, at least in part, memory impairment and cognitive deficits in Alzheimer's disease (AD). However, it is still unclear whether this is a consequence of the loss of cholinergic neurons and elimination of nicotinic acetycholine receptors (nAChRs) in AD brain or of a direct impact of molecular interactions of the amyloid-beta (Abeta) peptide with nAChRs, leading to dysregulation of receptor function. This review examines recent progress in our understanding of the roles of nicotinic receptors in mechanisms of synaptic plasticity, molecular interactions of Abeta with nAChRs, and how Abeta-induced dysregulation of nicotinic receptor function may underlie synaptic failure in AD.
View Article and Find Full Text PDFIn a previous study, we demonstrated the antinociceptive effect of 63SF, a proanthocyanidin-rich fraction obtained from Croton celtidifolius barks, in chemical and thermal behavioural models of pain in mice. The current study now investigate the possible mechanisms underlying the antinociceptive activity of 63SF in the formalin test, by using drugs which interfere with systems that are implicated in descending control of nociception. The antinociceptive effect of 63SF (11 mg/kg, i.
View Article and Find Full Text PDFThe chemical composition of the chromatography 63 subfraction (63SF) from the ethyl acetate soluble fraction of the crude extract of Croton celtidifolius bark presented a high content of total proanthocyanidins (75.0+/-2.3%).
View Article and Find Full Text PDFUncaria tomentosa (Willd.) DC (Rubiaceae) is a vine that grows in the Amazon rainforest. Its bark decoctions are used by Peruvian Indians to treat several diseases.
View Article and Find Full Text PDF