Publications by authors named "Sofia Jerez"

Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Vitamin C is crucial for the formation and maintenance of bone by influencing connective tissue integrity through its role in collagen maturation and epigenetic regulation.
  • It modulates chromatin accessibility, enhancing the expression of key genes for osteoblast development while affecting histone marks and DNA methylation.
  • Lack of Vitamin C disrupts bone development, and its epigenetic roles could be targeted for therapies against bone degeneration conditions.
View Article and Find Full Text PDF

High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts.

View Article and Find Full Text PDF

Background: Mesenchymal stem cell (MSC)-supplemented acellular nerve allografts (ANA) are a potential strategy to improve the treatment of segmental nerve defects. Prior to clinical translation, optimal cell delivery methods must be defined. While two techniques, dynamic seeding and microinjection, have been described, the seeding efficiency, cell viability, and distribution of MSCs in ANAs are yet to be compared.

View Article and Find Full Text PDF

Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery.

View Article and Find Full Text PDF

Skeletal development and bone formation are regulated by epigenetic mechanisms that either repress or enhance osteogenic commitment of mesenchymal stromal/stem cells and osteoblasts. The transcriptional suppressive trimethylation of histone 3 lysine 27 (H3K27me3) hinders differentiation of pre-committed osteoblasts. Osteoblast maturation can be stimulated by genetic loss of the H3K27 methyltransferase Ezh2 which can also be mimicked pharmacologically using the classical Ezh2 inhibitor GSK126.

View Article and Find Full Text PDF

Purpose: We evaluated biological effects of distinct local anesthetics on human adipose-derived mesenchymal stem cells when applied to reduce periprocedural pain during mesenchymal stem cell injections.

Methods And Materials: Metabolic activity (MTS assay), viability (Live/Dead stain), and gene expression (quantitative real-time reverse-transcriptase polymerase chain reaction) were measured in mesenchymal stem cells incubated with various concentrations of lidocaine, ropivacaine, or bupivacaine during a 12-hr time course.

Results: Cell viability and metabolic activity decreased in a dose, time, and substance-specific manner after exposure to lidocaine, ropivacaine, and bupivacaine, with ropivacaine being the least cytotoxic.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary bone tumor during childhood and adolescence. Several reports have presented data on serum biomarkers for osteosarcoma, but few reports have analyzed circulating microRNAs (miRNAs). In this study, we used next generation miRNA sequencing to examine miRNAs isolated from microvesicle-depleted extracellular vesicles (EVs) derived from six different human osteosarcoma or osteoblastic cell lines with different degrees of metastatic potential (i.

View Article and Find Full Text PDF

Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1).

View Article and Find Full Text PDF

Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins.

View Article and Find Full Text PDF

Emerging evidence suggests that chronic inflammation caused by pathogen infection is connected to the development of various types of cancer. It is estimated that up to 20% of all cancer deaths is linked to infections and inflammation. In gastric cancer, such triggers can be infection of the gastric epithelium by either (), a bacterium present in half of the world population; or by Epstein-Barr virus (EBV), a double-stranded DNA virus which has recently been associated with gastric cancer.

View Article and Find Full Text PDF

Osteosarcoma is the most common malignant bone tumor in children and adolescents. Metastasis and poor responsiveness to chemotherapy in osteosarcoma correlates with over-expression of the runt-related transcription factor RUNX2, which normally plays a key role in osteogenic lineage commitment, osteoblast differentiation, and bone formation. Furthermore, WNT/β-catenin signaling is over-activated in osteosarcoma and promotes tumor progression.

View Article and Find Full Text PDF

Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • Oral immunization systems could greatly benefit the salmon industry, especially during seawater growth stages when injection vaccinations are not feasible.
  • A new oral vaccine for salmonid rickettsial septicaemia (SRS) using MicroMatrix™ Technology has been developed, showing an effective immune response after administration with daily feed.
  • This oral vaccine induces specific antibodies quickly and provides protection against lethal infections, proving to be an effective prevention method for SRS throughout the salmon farming process.
View Article and Find Full Text PDF