Current hardware limitations make it impossible to train convolutional neural networks on gigapixel image inputs directly. Recent developments in weakly supervised learning, such as attention-gated multiple instance learning, have shown promising results, but often use multi-stage or patch-wise training strategies risking suboptimal feature extraction, which can negatively impact performance. In this paper, we propose to train a ResNet-34 encoder with an attention-gated classification head in an end-to-end fashion, which we call StreamingCLAM, using a streaming implementation of convolutional layers.
View Article and Find Full Text PDFPoor generalizability is a major barrier to clinical implementation of artificial intelligence in digital pathology. The aim of this study was to test the generalizability of a pretrained deep learning model to a new diagnostic setting and to a small change in surgical indication. A deep learning model for breast cancer metastases detection in sentinel lymph nodes, trained on CAMELYON multicenter data, was used as a base model, and achieved an AUC of 0.
View Article and Find Full Text PDFDeep learning (DL) has shown great potential in digital pathology applications. The robustness of a diagnostic DL-based solution is essential for safe clinical deployment. In this work we evaluate if adding uncertainty estimates for DL predictions in digital pathology could result in increased value for the clinical applications, by boosting the general predictive performance or by detecting mispredictions.
View Article and Find Full Text PDF