Background: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique commonly used to modulate cognitive functions; so-called "anodal" stimulation is considered to increase cortical excitability while "cathodal" stimulation is presumed to have the opposite result. Yet, a growing number of recent studies question the robustness of this polarity-dependent effect, namely because of the important inter-individual variability with regards to tDCS modulatory effects. A plausible reason for this heterogenous response may lay in task impurity issues in the evaluation of cognitive functions.
View Article and Find Full Text PDFSince the initial demonstration of linear effects of stimulation duration and intensity on the strength of after-effects associated with transcranial direct current stimulation (tDCS), few studies have systematically assessed how varying these parameters modulates corticospinal excitability. Therefore, the objective of this study was to systematically evaluate the effects of anodal tDCS on corticospinal excitability at two stimulation intensities (1 mA, 2 mA) and durations (10 min, 20 min), and determine the value of several variables in predicting response. Two groups of 20 individuals received, in two separate sessions, 1 and 2 mA anodal tDCS (left primary motor cortex (M1)-right supra-orbital montage) for either 10- or 20-min.
View Article and Find Full Text PDF