Publications by authors named "Sofia Eberstal"

Solid tumors, including gliomas, still represent a challenge to clinicians and first line treatments often fail, calling for new paradigms in cancer therapy. Novel strategies to overcome tumor resistance are mainly represented by multi-targeted approaches, and cell vector-based therapy is one of the most promising treatment modalities under development. Here, we show that mouse bone marrow-derived mesenchymal stromal cells (MSCs), when primed with low-dose irradiation (irMSCs), undergo changes in their immunogenic and angiogenic capacity and acquire anti-tumoral properties in a mouse model of glioblastoma (GBM).

View Article and Find Full Text PDF

Gene profiling has revealed that malignant gliomas can be divided into four distinct molecular subtypes, where tumors with a mesenchymal gene expression are correlated with short survival. The present investigation was undertaken to clarify whether human malignant gliomas contain endogenous mesenchymal stromal cells (MSC), fulfilling consensus criteria defined by The International Society for Cellular Therapy, recruited from the host. We found that MSC-like cells can be isolated from primary human malignant gliomas.

View Article and Find Full Text PDF

In vitro cultured brain tumour cells are indispensable tools for drug screening and therapeutic development. Serum-free culture conditions tentatively preserve the features of the original tumour, but commonly comprise neurosphere propagation, which is a technically challenging procedure. Here, we define a simple, non-expensive and reproducible serum-free cell culture protocol for establishment and propagation of primary paediatric brain tumour cultures as adherent monolayers.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stromal cells (MSCs) target glioma extensions and micro-satellites efficiently when implanted intratumorally. Here, we report that intratumoral implantation of MSCs and peripheral immunotherapy with interferon-gamma (IFNγ) producing tumor cells improve the survival of glioma-bearing rats (54% cure rate) compared to MSC alone (0% cure rate) or immunotherapy alone (21% cure rate) by enforcing an intratumoral CD8(+) T cell response. Further analysis revealed that the MSCs up-regulate MHC classes I and II in response to IFNγ treatment in vitro and secrete low amounts of immunosuppressive molecules prostaglandin E2 and interleukin-10.

View Article and Find Full Text PDF

Malignant brain tumors induce pronounced immunosuppression, which diminishes immune responses generated by immunotherapy. Here we report that peripheral immunotherapy, using irradiated unmodified whole tumor cells, and systemic cyclooxygenase-2 inhibition induce cure in glioma-bearing rats (60% cure rate), whereas neither monotherapy was sufficient to cure any animal. Moreover, the combined therapy protected against secondary tumor challenges (89% cure rate) and the secondary immune response was correlated with increased plasma interferon-gamma levels and CD8(+) T cells systemically and intratumorally.

View Article and Find Full Text PDF

Immunotherapy has shown effectiveness against experimental malignant brain tumors, but the clinical results have been less convincing most likely due to immunosuppression. Prostaglandin E2 (PGE2 ) is the key immunosuppressive product of cyclooxygenase-2 (COX-2) and increased levels of PGE2 and COX-2 have been shown in several tumor types, including brain tumors. In the current study, we report enhanced cure rate of mice with established mouse GL261 brain tumors when immunized with granulocyte macrophage-colony stimulating factor (GM-CSF) secreting tumor cells and simultaneously treated with the selective COX-2 inhibitors parecoxib systemically (5 mg/kg/day; 69% cure rate) or valdecoxib intratumorally (5.

View Article and Find Full Text PDF

Despite temozolomide (TMZ) treatment, the prognosis for patients with glioblastoma multiforme is still dismal. As dose escalation of TMZ is limited by systemic toxicity, intratumoral delivery emerges as an attractive treatment modality, which may sustain cytotoxic drug concentrations intratumorally and induce immunogenic cell death. Both clinical and experimental gliomas have responded to immunotherapy, but the benefit of simultaneous chemo- and immunotherapy is inadequately studied.

View Article and Find Full Text PDF

Peripheral immunization, using a combination of interferon-gamma (IFNγ)- and interleukin-7 (IL-7)-producing tumor cells, eradicated 75% of pre-established intracerebral N32 rat glioma tumors, and prolonged survival in the more aggressive RG2 model. Rats immunized with IFNγ- and IL7-transduced N32 cells displayed increases in IFNγ plasma levels and proliferating circulating T cells when compared with rats immunized with N32-wild type cells. Following irradiation, the expression of MHC I and II was high on N32-IFNγ cells, but low on RG2-IFNγ cells.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most common and aggressive malignant brain tumor in humans, and the prognosis is very poor despite conventional therapy. Immunotherapy represents a novel treatment approach, but the effect is often weakened by release of immune-suppressive molecules such as prostaglandins. In the current study, we investigated the effect of immunotherapy with irradiated interferon-γ (IFN-γ)-secreting tumor cells and administration of the selective cyclooxygenase-2 (COX-2) inhibitor parecoxib as treatment of established rat brain tumors.

View Article and Find Full Text PDF

We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNgamma of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNgamma systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation.

View Article and Find Full Text PDF