Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Polyphenism is a type of developmental plasticity that translates continuous environmental variability into discontinuous phenotypes. Such discontinuity likely requires a switch between alternative gene-regulatory networks, a principle that has been borne out by mechanisms found to promote morph-specific gene expression. However, whether robustness is required to execute a polyphenism decision has awaited testing at the molecular level.
View Article and Find Full Text PDFDevelopmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus.
View Article and Find Full Text PDFNutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity.
View Article and Find Full Text PDFDevelopmental processes transduce diverse influences during phenotype formation, thereby biasing and structuring amount and type of phenotypic variation available for evolutionary processes to act on. The causes, extent, and consequences of this bias are subject to significant debate. Here we explore the role of developmental bias in contributing to organisms' ability to innovate, to adapt to novel or stressful conditions, and to generate well integrated, resilient phenotypes in the face of perturbations.
View Article and Find Full Text PDFIntegr Comp Biol
November 2019
Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood.
View Article and Find Full Text PDFOrganisms cope with nutritional variation via developmental plasticity, adjusting trait size to nutrient availability for some traits while enabling others to develop in a nutritionally robust manner. Yet, the developmental mechanisms that regulate organ-specific growth across nutritional gradients remain poorly understood. We assessed the functions of members of the insulin/insulin-like signalling pathway (IIS) in the regulation of nutrition sensitivity and robustness in males of the horn-polyphenic beetle Onthophagus taurus, as well as potential regulatory interactions between IIS and two other growth-regulating pathways: Doublesex and Hedgehog signalling.
View Article and Find Full Text PDFExposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature.
View Article and Find Full Text PDFRecent genetic studies and whole-genome sequencing projects have greatly improved our understanding of human variation and clinically actionable genetic information. Smaller ethnic populations, however, remain underrepresented in both individual and large-scale sequencing efforts and hence present an opportunity to discover new variants of biomedical and demographic significance. This report describes the sequencing and analysis of a genome obtained from an individual of Serbian origin, introducing tens of thousands of previously unknown variants to the currently available pool.
View Article and Find Full Text PDFNiche construction occurs when organisms modify their environments and alter selective conditions through their physiology and behaviours. Such modifications can bias phenotypic variation and enhance organism-environment fit. Yet few studies exist that experimentally assess the degree to which environmental modifications shape developmental and fitness outcomes, how their influences may differ among species and identify the underlying proximate mechanisms.
View Article and Find Full Text PDFCurr Opin Insect Sci
February 2017
Scaling relationships play critical roles in defining biological shape, trait functionality, and species characteristics, yet the developmental basis of scaling and its evolution remain poorly resolved in most taxa. In the horned beetle genus Onthophagus, scaling relationships of most traits are largely comparable across many species, however, the morphology and scaling of horns, a recent evolutionary invention, has diversified dramatically, ranging from modestly to highly positively linear to more complex sigmoidal allometries. Through a series of transcriptomic screens and gene function assays, the doublesex, hedgehog, insulin, and serotonin signaling pathways have recently been implicated in the regulation of amplitude, slope, and threshold location of the highly sigmoidal horn allometry in O.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
January 2017
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication.
View Article and Find Full Text PDF