Disulfide bond protein A (DsbA) is an oxidoreductase enzyme that catalyzes the formation of disulfide bonds in Gram-negative bacteria. In Escherichia coli, DsbA (EcDsbA) is essential for bacterial virulence, thus inhibitors have the potential to act as antivirulence agents. A fragment-based screen was conducted against EcDsbA and herein we describe the development of a series of compounds based on a phenylthiophene hit identified from the screen.
View Article and Find Full Text PDFThe cell polarity regulator Scribble has been shown to be a critical regulator of the establishment and development of tissue architecture, and its dysregulation promotes or suppresses tumour development in a context-dependent manner. Scribble activity is subverted by numerous viruses. This includes human papillomaviruses (HPVs), who target Scribble via the E6 protein.
View Article and Find Full Text PDFTRIM33 is a member of the tripartite motif (TRIM) family of proteins, some of which possess E3 ligase activity and are involved in the ubiquitin-dependent degradation of proteins. Four of the TRIM family proteins, TRIM24 (TIF1α), TRIM28 (TIF1β), TRIM33 (TIF1γ) and TRIM66, contain C-terminal plant homeodomain (PHD) and bromodomain (BRD) modules, which bind to methylated lysine (KMe) and acetylated lysine (KAc), respectively. Here we investigate the differences between the two isoforms of TRIM33, TRIM33α and TRIM33β, using structural and biophysical approaches.
View Article and Find Full Text PDFSFPQ is a ubiquitous nuclear RNA-binding protein implicated in many aspects of RNA biogenesis. Importantly, nuclear depletion and cytoplasmic accumulation of SFPQ has been linked to neuropathological conditions such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Here, we describe a molecular mechanism by which SFPQ is mislocalized to the cytoplasm.
View Article and Find Full Text PDFScribble is a crucial adaptor protein that plays a pivotal role during establishment and control of cell polarity, impacting many physiological processes ranging from cell migration to immunity and organization of tissue architecture. Scribble harbours a leucine-rich repeat domain and four PDZ domains that mediate most of Scribble's interactions with other proteins. It has become increasingly clear that post-translational modifications substantially impact Scribble-ligand interactions, with phosphorylation being a major modulator of binding to Scribble.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
June 2019
Splicing factor proline/glutamine-rich (SFPQ) is an essential RNA-binding protein that is implicated in many aspects of nuclear function. The structures of SFPQ and two paralogs, non-POU domain-containing octamer-binding protein and paraspeckle component 1, from the Drosophila behavior human splicing protein family have previously been characterized. The unusual arrangement of the four domains, two RNA-recognition motifs (RRMs), a conserved region termed the NonA/paraspeckle (NOPS) domain and a C-terminal coiled coil, in the intertwined dimer provides a potentially unique RNA-binding surface.
View Article and Find Full Text PDFDefensins are an extensive family of host defense peptides found ubiquitously across plant and animal species. In addition to protecting against infection by pathogenic microorganisms, some defensins are selectively cytotoxic toward tumor cells. As such, defensins have attracted interest as potential antimicrobial and anticancer therapeutics.
View Article and Find Full Text PDFScribble (SCRIB) is an important adaptor protein that controls the establishment and maintenance of apico-basal cell polarity. To better understand how SCRIB controls cell polarity signalling via its PDZ domains, we investigated human SCRIB interactions with adenomatous polyposis coli (APC). We show that SCRIB PDZ1, PDZ2 and PDZ3 are the major interactors with the APC PDZ-binding motif (PBM), whereas SCRIB PDZ4 does not show detectable binding to APC.
View Article and Find Full Text PDFBcl-2 family proteins play a crucial role in regulating apoptosis, a process critical for development, eliminating damaged or infected cells, host-pathogen interactions and in disease. Dysregulation of Bcl-2 proteins elicits an expansive cell survival mechanism promoting cell migration, invasion and metastasis. Through a network of intra-family protein-protein interactions Bcl-2 family members regulate the release of cell death factors from mitochondria.
View Article and Find Full Text PDFHuman defensins belong to a subfamily of the cationic antimicrobial peptides and act as a first line of defense against invading microbes. Their often broad-spectrum antimicrobial and antitumor activities make them attractive for therapeutic development; however, their precise molecular mechanism(s) of action remains to be defined. We show that human β-defensin 2 (HBD-2) permeabilizes cell membranes via a mechanism targeting the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP).
View Article and Find Full Text PDFProgrammed cell death or apoptosis is a critical mechanism for the controlled removal of damaged or infected cells, and proteins of the Bcl-2 family are important arbiters of this process. Viruses have been shown to encode functional and structural homologs of Bcl-2 to counter premature host-cell apoptosis and ensure viral proliferation or survival. Grouper iridovirus (GIV) is a large DNA virus belonging to the Iridoviridae family and harbors GIV66, a putative Bcl-2-like protein and mitochondrially localized apoptosis inhibitor.
View Article and Find Full Text PDFEpithelial cell polarity is controlled by components of the Scribble polarity module, and its regulation is critical for tissue architecture and cell proliferation and migration. In , the adaptor protein Guk-holder (Gukh) binds to the Scribbled (Scrib) and Discs Large (Dlg) components of the Scribble polarity module and plays an important role in the formation of neuromuscular junctions. However, Gukh's role in epithelial tissue formation and the molecular basis for the Scrib-Gukh interaction remain to be defined.
View Article and Find Full Text PDFMembers of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell.
View Article and Find Full Text PDFProgrammed cell death or apoptosis of infected host cells is an important defense mechanism in response to viral infections. This process is regulated by proapoptotic and prosurvival members of the B-cell lymphoma 2 (Bcl-2) protein family. To counter premature death of a virus-infected cell, poxviruses use a range of different molecular strategies including the mimicry of prosurvival Bcl-2 proteins.
View Article and Find Full Text PDFSponges of the porifera family harbor some of the evolutionary most ancient orthologs of the B-cell lymphoma-2 (Bcl-2) family, a protein family critical to regulation of apoptosis. The genome of the sponge Geodia cydonium contains the putative pro-survival Bcl-2 homolog BHP2, which protects sponge tissue as well as mammalian Hek-293 and NIH-3T3 cells against diverse apoptotic stimuli. The Lake Baikal demosponge Lubomirskia baicalensis has been shown to encode both putative pro-survival Bcl-2 (LB-Bcl-2) and pro-apoptotic Bcl-2 members (LB-Bak-2), which have been implied in axis formation (branches) in L.
View Article and Find Full Text PDFProgrammed cell death is a tightly controlled process critical for the removal of damaged or infected cells. Pro- and antiapoptotic proteins of the Bcl-2 family are pivotal mediators of this process. African swine fever virus (ASFV) is a large DNA virus, the only member of the family, and harbors A179L, a putative Bcl-2 like protein.
View Article and Find Full Text PDFSubversion of host cell apoptotic responses is a prominent feature of viral immune evasion strategies to prevent premature clearance of infected cells. Numerous poxviruses encode structural and functional homologs of the Bcl-2 family of proteins, and vaccinia virus harbors antiapoptotic F1L that potently inhibits the mitochondrial apoptotic checkpoint. Recently F1L has been assigned a caspase-9 inhibitory function attributed to an N-terminal α helical region of F1L spanning residues 1-15 (1) preceding the domain-swapped Bcl-2-like domains.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
August 2015
Apoptosis is a key innate defence mechanism to eliminate virally infected cells. To counteract premature host-cell apoptosis, poxviruses have evolved numerous molecular strategies, including the use of Bcl-2 proteins, to ensure their own survival. Here, it is reported that the Deerpox virus inhibitor of apoptosis, DPV022, only engages a highly restricted set of death-inducing Bcl-2 proteins, including Bim, Bax and Bak, with modest affinities.
View Article and Find Full Text PDFThe thiol-disulfide oxidoreductase enzyme DsbA catalyzes the formation of disulfide bonds in the periplasm of Gram-negative bacteria. DsbA substrates include proteins involved in bacterial virulence. In the absence of DsbA, many of these proteins do not fold correctly, which renders the bacteria avirulent.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2013
Crystallization of macromolecules is famously difficult. By knowing what has worked for others, researchers can ease the process, both in the case where the protein has already been crystallized and in the situation where more general guidelines are needed. The 264 crystallization communications published in Acta Crystallographica Section F in 2012 have been reviewed, and from this analysis some information about trends in crystallization has been gleaned.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2012
BHRF1 is a pro-survival Bcl-2 homologue encoded by Epstein-Barr virus (EBV) that plays a key role in preventing premature host cell death during viral infection and may contribute to the development of malignancies associated with chronic EBV infections. The anti-apoptotic action of BHRF1 is based on its ability to sequester pro-apoptotic Bcl-2 family proteins, in particular Bim and Bak. These interactions have been previously studied in three dimensions by determining crystal structures of BHRF1 in complex with both Bim and Bak BH3 domains.
View Article and Find Full Text PDFUvrA proteins are key actors in DNA damage repair and play an essential role in prokaryotic nucleotide excision repair (NER), a pathway that is unique in its ability to remove a broad spectrum of DNA lesions. Understanding the DNA binding and damage recognition activities of the UvrA family is a critical component for establishing the molecular basis of this process. Here we report the structure of the class II UvrA2 from Deinococcus radiodurans in two crystal forms.
View Article and Find Full Text PDF