Background/aims: To objectively classify eyes as either healthy or glaucoma based exclusively on data provided by peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform (GCIPL) measurements derived from spectral-domain optical coherence tomography (SD-OCT) using machine learning algorithms.
Methods: Three clustering methods (k-means, hierarchical cluster analysis -HCA- and model-based clustering-MBC-) were used separately to classify a training sample of 109 eyes as either healthy or glaucomatous using solely 13 SD-OCT parameters: pRNFL average and sector thicknesses and GCIPL average and minimum values together with the six macular wedge-shaped regions. Then, the best-performing algorithm was applied to an independent test sample of 102 eyes to derive close estimates of its actual performance (external validation).
Purpose: To clinically validate the diagnostic ability of two optical coherence tomography (OCT)-based glaucoma diagnostic calculators (GDCs).
Methods: We conducted a retrospective, consecutive sampling of 76 patients with primary open-angle glaucoma, 107 glaucoma suspects, and 67 controls. Demographics, reliable visual field testing, and macular and optic disc OCT were collected.