Publications by authors named "Sofia A M Martins"

Microfluidic strategies combined with transduction and electronic integration have the promise of enabling miniaturized, combinatorial assays at higher speeds and lower costs, while at the same time mimicking the local chemical concentrations and force fields of the cellular in vivo environment. In this chapter we introduce a microfluidic structure with hydrodynamic cell traps and a culture volume in the nanoliter range (50 nL), to quantitatively evaluate the transient calcium response of the endogenous Muscarinic type 1 receptor (M1) in HEK 293 T cells. The microfluidic fabrication protocol is described as well as a methodology to monitor the cell response in real time, after stimulation with M1 agonists (e.

View Article and Find Full Text PDF

The accurate diagnosis of bacterial infections is of critical importance for effective treatment decisions. Due to the multietiologic nature of most infectious diseases, multiplex assays are essential for diagnostics. However, multiplexability in nucleic acid amplification-based methods commonly resorts to multiple primers and/or multiple reaction chambers, which increases analysis cost and complexity.

View Article and Find Full Text PDF

Bovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance.

View Article and Find Full Text PDF

The growing need for biological information at the single cell level has driven the development of improved cytometry technologies. Flow cytometry is a particularly powerful method that has evolved over the past few decades. Flow cytometers have become essential instruments in biomedical research and routine clinical tests for disease diagnosis, prognosis, and treatment monitoring.

View Article and Find Full Text PDF

Portable analytical devices are notably gaining relevance in the panorama of urgent testing. Such devices have the potential to play an important role as easy-to-handle tools in critical situations. Epidemic infectious disease agents (e.

View Article and Find Full Text PDF

Live-cell assays used in GPCR research often rely on fluorescence techniques that generate large amounts of raw image data. Consequently, the capacity to accurately and timely extract useful information from image and video data has become more and more important. Image J is an open-source program that provides powerful tools with a simple interface designed to fit the needs of image analysis of most researchers.

View Article and Find Full Text PDF

The existence of cellular receptors, a group of specialized biomolecules to which endogenous and exogenous compounds bind and exert an effect, is one of the most exciting aspects of cell biology. Among the different receptor types recognized today, G-protein-coupled receptors (GPCRs) constitute, undoubtedly, one of the most important classes, in part due to their versatility, but particularly, due to their central role in a multitude of physiological states. The unveiling of GPCR function and mode of action is a challenging task that prevails until our days, as the full potential of these receptors is far from being established.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices (μPADs) fabricated by wax-printing are suitable platforms for the development of simple and affordable molecular diagnostic assays for infectious diseases, especially in resource-limited settings. Paper devices can be modified for biological assays by adding appropriate reagents to the test areas. For this purpose, the use of affinity immobilization strategies can be a good solution for bioactive paper fabrication.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play a key role in many physiological or disease-related processes and for this reason are favorite targets of the pharmaceutical industry. Although ~30% of marketed drugs target GPCRs, their potential remains largely untapped. The discovery of new leads calls for the screening of thousands of compounds with high-throughput cell-based assays.

View Article and Find Full Text PDF

Electroporation has been considered one of the most efficient non-viral based methods to deliver genes regardless of frequently observed high cell mortality. In this study we used a microporation technique to optimise the delivery of plasmid DNA encoding green fluorescence protein (GFP) to human bone marrow mesenchymal stem cells (BM-MSC). Using resuspension buffer (RB) and as low as 1.

View Article and Find Full Text PDF