Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays.
View Article and Find Full Text PDFDiagnostic devices for point-of-care (POC) urine analysis (urinalysis) based on microfluidic technology have been actively developing for several decades as an alternative to laboratory based biochemical assays. Urine proteins (albumin, immunoglobulins, uromodulin, haemoglobin etc.) are important biomarkers of various pathological conditions and should be selectively detected by urinalysis sensors.
View Article and Find Full Text PDFBackground: The luminescence amplification of semiconductor quantum dots (QD) in the presence of self-assembled gold nanoparticles (Au NPs) is one of way for creating biosensors with highly efficient transduction.
Aims: The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein.
Methods: In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes.
Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called "criterion function" is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes.
View Article and Find Full Text PDFThe current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte.
View Article and Find Full Text PDF