MESP1 is a key transcription factor in development of early cardiovascular tissue and it is required for induction of the cardiomyocyte (CM) gene expression program, but its role in vascular development is unclear. Here, we used inducible CRISPRi knock-down of MESP1 to analyze the molecular processes of the early differentiation stages of human induced pluripotent stem cells into mesoderm and subsequently vascular progenitor cells. We found that expression of the mesodermal marker, BRACHYURY (encoded by T) was unaffected in MESP1 knock-down cells as compared to wild type cells suggesting timely movement through the primitive streak whereas another mesodermal marker MIXL1 was slightly, but significantly decreased.
View Article and Find Full Text PDFJ Renin Angiotensin Aldosterone Syst
December 2015
Introduction: MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular function including regulation of cardiac hypertrophy, heart failure and blood pressure possibly through AT1R signalling. However, the miR-132/212 targets in the heart remain unknown.
View Article and Find Full Text PDFMicroRNAs (miRNAs), a group of small non-coding RNAs that fine tune translation of multiple target mRNAs, are emerging as key regulators in cardiovascular development and disease. MiRNAs are involved in cardiac hypertrophy, heart failure and remodeling following cardiac infarction; however, miRNAs involved in hypertension have not been thoroughly investigated. We have recently reported that specific miRNAs play an integral role in Angiotensin II receptor (AT1R) signaling, especially after activation of the Gαq signaling pathway.
View Article and Find Full Text PDF