Nitrogen (N) fertilization in paddy soils decreases arsenic mobility and methane emissions. However, it is unknown how quantity and frequency of N fertilization affects the interlinked redox reactions of iron(II)-driven denitrification, iron mineral (trans-)formation with subsequent arsenic (im-)mobilization, methane and nitrous oxide emissions, and how this links to microbiome composition. Thus, we incubated paddy soil from Vercelli, Italy, over 129 days and applied nitrate fertilizer at different concentrations (control: 0, low: ∼35, medium: ∼100, high: ∼200 mg N kg soil) once at the beginning and after 49 days.
View Article and Find Full Text PDFEnviron Sci Technol
December 2022
Arsenic (As)-bearing water treatment residuals (WTRs) from household sand filters are usually disposed on top of floodplain soils and may act as a secondary As contamination source. We hypothesized that open disposal of these filter-sands to soils will facilitate As release under reducing conditions. To quantify the mobilization risk of As, we incubated the filter-sand, the soil, and a mixture of the filter-sand and soil in anoxic artificial rainwater and followed the dynamics of reactive Fe and As in aqueous, solid, and colloidal phases.
View Article and Find Full Text PDF