Publications by authors named "Soens B"

Rationale: Micrometeorites are extraterrestrial particles smaller than ~2 mm in diameter, most of which melted during atmospheric entry and crystallised or quenched to form 'cosmic spherules'. Their parentage among meteorite groups can be inferred from triple-oxygen isotope compositions, for example, by secondary ion mass spectrometry (SIMS). This method uses sample efficiently, preserving spherules for other investigations.

View Article and Find Full Text PDF

Fractionation effects related to evaporation and condensation had a major impact on the current elemental and isotopic composition of the Solar System. Although isotopic fractionation of moderately volatile elements has been observed in tektites due to impact heating, the exact nature of the processes taking place during hypervelocity impacts remains poorly understood. By studying Fe in microtektites, here we show that impact events do not simply lead to melting, melt expulsion and evaporation, but involve a convoluted sequence of processes including condensation, variable degrees of mixing between isotopically distinct reservoirs and ablative evaporation during atmospheric re-entry.

View Article and Find Full Text PDF

Large airbursts, the most frequent hazardous impact events, are estimated to occur orders of magnitude more frequently than crater-forming impacts. However, finding traces of these events is impeded by the difficulty of identifying them in the recent geological record. Here, we describe condensation spherules found on top of Walnumfjellet in the Sør Rondane Mountains, Antarctica.

View Article and Find Full Text PDF
Article Synopsis
  • The breakup of the L-chondrite parent body in the asteroid belt 466 million years ago is responsible for nearly one-third of all meteorites that fall on Earth today.
  • This breakup coincided with the beginning of a significant sea level drop, previously linked to an Ordovician ice age, which led to a massive increase in extraterrestrial material reaching Earth.
  • The influx of dust from this event contributed to a cooling period on Earth, which was associated with a major decline in sea levels and significant biodiversity changes during the Great Ordovician Biodiversification Event.
View Article and Find Full Text PDF