Since the 19 century, it has been known that the carnivorous Venus flytrap is electrically excitable. Nevertheless, the mechanism and the molecular entities of the flytrap action potential (AP) remain unknown. When entering the electrically excitable stage, the trap expressed a characteristic inventory of ion transporters, among which the increase in glutamate receptor GLR3.
View Article and Find Full Text PDFPlants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP).
View Article and Find Full Text PDF