Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2024
Cancer immunotherapy is often hindered by an immunosuppressive tumor microenvironment (TME). Various strategies are being evaluated to shift the TME from an immunologically 'cold' to 'hot' tumor and hereby improve current immune checkpoint blockades (ICB). One particular hot topic is the use of combination therapies.
View Article and Find Full Text PDFCancer immunotherapy has emerged as a promising approach for the induction of an antitumor response. While immunotherapy response rates are very high in some cancers, the efficacy against solid tumors remains limited caused by the presence of an immunosuppressive tumor microenvironment. Induction of immunogenic cell death (ICD) in the tumor can be used to boost immunotherapy response in solid cancers by eliciting the release of immune-stimulatory components.
View Article and Find Full Text PDFMany individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool.
View Article and Find Full Text PDFOver the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress.
View Article and Find Full Text PDFThe biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
June 2023
Staphylococcus aureus is considered a high priority pathogen by the World Health Organization due to its high prevalence and the potential to form biofilms. Currently, the available treatments for S. aureus biofilm-associated infections do not target the extracellular polymeric substances (EPS) matrix.
View Article and Find Full Text PDFThe ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies.
View Article and Find Full Text PDFEndothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5).
View Article and Find Full Text PDFNanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO nanoparticles in order to tune the kinetics and full extent of Cu ion release from the remnant TiO nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy.
View Article and Find Full Text PDFAim: To investigate whether co-ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycaemia in older men with type 2 diabetes (T2D).
Materials And Methods: Blood glucose, plasma insulin and glucagon concentrations were measured for 180 minutes following ingestion of a drink containing 30 g of glucose (G; 120 kcal), 30 g of whey protein (120 kcal), 30 g of glucose plus 30 g of whey protein (GP; 240 kcal), or control (~2 kcal) in older men with T2D (n = 10, 77 ± 1 years; 31 ± 1.7 kg/m ) and without T2D (n = 10, 78 ± 2 years; 27 ± 1.
Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs.
View Article and Find Full Text PDFNanoparticle (NP) delivery to solid tumors remains an actively studied field, where several recent studies have shed new insights into the underlying mechanisms and the still overall poor efficacy. In the present study, Au NPs of different sizes were used as model systems to address this topic, where delivery of the systemically administered NPs to the tumor as a whole or to tumor cells specifically was examined in view of a broad range of tumor-associated parameters. Using non-invasive imaging combined with histology, immunohistochemistry, single-cell spatial RNA expression and image-based single cell cytometry revealed a size-dependent complex interaction of multiple parameters that promoted tumor and tumor-cell specific NP delivery.
View Article and Find Full Text PDFThe bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd and grow CdS QDs without any agglomeration. The H NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities.
View Article and Find Full Text PDFNanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods to monitor the delivery and therapeutic efficacy of nanoparticles are urgently needed.
View Article and Find Full Text PDFThe ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycemia, but its effect in older people, who have an increased predisposition for type 2 diabetes, has not been clarified. Blood glucose, plasma insulin and glucagon concentrations were measured for 180 min following a drink containing either glucose (120 kcal), whey-protein (120 kcal), whey-protein plus glucose (240 kcal) or control (~2 kcal) in healthy younger (n = 10, 29 ± 2 years; 26.1 ± 0.
View Article and Find Full Text PDFInspired by the structure of eukaryotic cells, multicompartmental microcapsules have gained increasing attention. However, challenges remain in the fabrication of "all-aqueous" (., oil-free) microcapsules composed of accurately adjustable hierarchical compartments.
View Article and Find Full Text PDFRed blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species.
View Article and Find Full Text PDFBackground: Caloric supplements are increasingly used by older people, aiming to increase their daily protein intake. These high caloric drinks, rich in glucose and whey-protein in particular, may result in potential harmful decreases in blood pressure (BP). The effect of ingesting whey-protein with glucose and fat on BP is unknown.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2022
Dietary protein may attenuate the muscle atrophy experienced by patients in the ICU, yet protein handling is poorly understood. To quantify protein digestion and amino acid absorption and fasting and postprandial myofibrillar protein synthesis during critical illness. Fifteen mechanically ventilated adults (12 male; aged 50 ± 17 yr; body mass index, 27 ± 5 kg⋅m) and 10 healthy control subjects (6 male; 54 ± 23 yr; body mass index, 27 ± 4 kg⋅m) received a primed intravenous L-[ring-H]-phenylalanine, L-[3,5-H]-tyrosine, and L-[1-C]-leucine infusion over 9.
View Article and Find Full Text PDFPostprandial hypotension (PPH) occurs frequently in older people >65 years old. Protein-rich supplements, particularly whey protein (WP), are increasingly used by older people for various health benefits. We have reported that 70 g WP drinks cause significant, and in some cases marked, falls in blood pressure (BP) in older men.
View Article and Find Full Text PDFRecent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both and experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level.
View Article and Find Full Text PDF