Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent.
View Article and Find Full Text PDFA fraction of core-collapse supernovae of type Ib/c are associated with gamma-ray bursts, which are thought to produce highly relativistic jets. Recently, it has been hypothesized that a larger fraction of core-collapse supernovae produce slower jets, which may contribute to the disruption and ejection of the supernova envelope, and explain the unusually energetic hypernovae. We explore the TeV neutrino signatures expected from such slower jets, and calculate the expected detection rates with upcoming Gigaton Cherenkov experiments.
View Article and Find Full Text PDFThe high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.
View Article and Find Full Text PDF